• Title/Summary/Keyword: 역 해석

Search Result 1,942, Processing Time 0.028 seconds

CAD/CAE/CAM에서 컴퓨터 그래픽의 응용과 공학해석의 역할

  • 이성우
    • Computational Structural Engineering
    • /
    • v.2 no.4
    • /
    • pp.5-10
    • /
    • 1989
  • CAD/CAM 과정에서 컴퓨터 그래픽은 매우 중요한 역할을 하고 있고, 앞으로 이 분야에서 그래픽 응용과 그 기법의 개발은 무궁할 것으로 예측된다. 또한 전 공정의 총합 CAD 과정에서 이들 컴퓨터 그래픽과 공학해석의 접속은 필수불가결할 것이다. 공학해석 분야에는 현재 유한요소법이 대종을 이루고 있으나 아직도 이러한 해석분야와 그래픽분야를 완전하게 접속시켜 전 공정의 설계를 컴퓨터로 자동화 하는데는 많은 시간이 요할 것 같다. 그러나 컴퓨터 하드웨어 값이 지속적으로 하락하고 저렴한 CAD 관련 소프트웨어가 개발될 것을 예상해 볼 때 설계 및 제작 자동화가 가까운 장래에 대단히 큰 진전을 이룰 수 있을 것으로 보인다.

  • PDF

Runoff Analysis for Urban Unit Subbasin Based on its Shape (유역형상을 고려한 도시 단위 소유역의 유출 해석)

  • Hur, Sung-Chul;Park, Sang-Sik;Lee, Jong-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.5
    • /
    • pp.491-501
    • /
    • 2008
  • In order to describe runoff characteristics of urban drainage area, outflow from subbasins divided by considering topography and flow path, is analyzed through stormwater system. In doing so, concentration time and time-area curve change significantly according to basin shape, and runoff characteristics are changed greatly by these attributes. Therefore, in this development study of FFC2Q model by MLTM, we aim to improve the accuracy in analyzing runoff by adding a module that considers basin shape, giving it an advantage over popular urban hydrology models, such as SWMM and ILLUDAS, that can not account for geometric shape of a basin due to their assumptions of unit subbasin as having a simple rectangular form. For subbasin shapes, symmetry types (rectangular, ellipse, lozenge), divergent types (triangle, trapezoid), and convergent types (inverted triangle, inverted trapezoid) have been analyzed in application of time-area curve for surface runoff analysis. As a result, we found that runoff characteristic can be quite different depending on basin shape. For example, when Gunja basin was represented by lozenge shape, the best results for peak flow discharge and overall shape of runoff hydrograph were achieved in comparison to observed data. Additionally, in case of considering subbasin shape, the number of division of drainage basin did not affect peak flow magnitude and gave stable results close to observed data. However, in case of representing the shape of subbasins by traditional rectangular approximation, the division number had sensitive effects on the analysis results.

Development of Site Management System for Temporary Facility Construction Using Back Analysis (역해석을 이용한 가시설공사 현장관리 시스템 개발)

  • Yun, Youngman
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.4
    • /
    • pp.570-577
    • /
    • 2019
  • Purpose: The purpose of this study is to develop a system that enables quick on-site response using real-time decision-making by sharing the results of measurement and management performed in the field for safe temporary construction. Method: It is possible to take preemptive responses during construction by identifying the safety factors of construction conditions from measurement results and determining the risk factors such as soil properties and variability of climate change that can occur during construction by simultaneously using the back analysis method reflected in the measurement system and structural review. Result: we developed a back analysis algorithm of the SUNEX program to cope with the discrepancies between the design results and measured results due to inconsistency between site conditions and design properties, unexpected loads, and outdoor environment. The process of matching the measurement result with the analysis result can be confirmed in the safety management system. Conclusion: Gateway was used to communicate with real-time measurement results and safety management system program. It was made possible to preemptively respond to risk factors that may occur in the field.