• Title/Summary/Keyword: 역행숫자주의력

Search Result 2, Processing Time 0.015 seconds

Neuropsychological Approaches to Mathematical Learning Disabilities and Research on the Development of Diagnostic Test (신경심리학적 이론에 근거한 수학학습장애의 유형분류 및 심층진단검사의 개발을 위한 기초연구)

  • Kim, Yon-Mi
    • Education of Primary School Mathematics
    • /
    • v.14 no.3
    • /
    • pp.237-259
    • /
    • 2011
  • Mathematics learning disabilities is a specific learning disorder affecting the normal acquisition of arithmetic and spatial skills. Reported prevalence rates range from 5 to 10 percent and show high rates of comorbid disabilities, such as dyslexia and ADHD. In this study, the characteristics and the causes of this disorder has been examined. The core cause of mathematics learning disabilities is not clear yet: it can come from general cognitive problems, or disorder of innate intuitive number module could be the cause. Recently, researchers try to subdivide mathematics learning disabilities as (1) semantic/memory type, (2) procedural/skill type, (3) visuospatial type, and (4) reasoning type. Each subtype is related to specific brain areas subserving mathematical cognition. Based on these findings, the author has performed a basic research to develop grade specific diagnostic tests: number processing test and math word problems for lower grades and comprehensive math knowledge tests for the upper grades. The results should help teachers to find out prior knowledge, specific weaknesses of students, and plan personalized intervention program. The author suggest diagnostic tests are organized into 6 components. They are number sense, conceptual knowledge, arithmetic facts retrieval, procedural skills, mathematical reasoning/word problem solving, and visuospatial perception tests. This grouping will also help the examiner to figure out the processing time for each component.

Study on the Neural Network for Handwritten Hangul Syllabic Character Recognition (수정된 Neocognitron을 사용한 필기체 한글인식)

  • 김은진;백종현
    • Korean Journal of Cognitive Science
    • /
    • v.3 no.1
    • /
    • pp.61-78
    • /
    • 1991
  • This paper descibes the study of application of a modified Neocognitron model with backward path for the recognition of Hangul(Korean) syllabic characters. In this original report, Fukushima demonstrated that Neocognitron can recognize hand written numerical characters of $19{\times}19$ size. This version accepts $61{\times}61$ images of handwritten Hangul syllabic characters or a part thereof with a mouse or with a scanner. It consists of an input layer and 3 pairs of Uc layers. The last Uc layer of this version, recognition layer, consists of 24 planes of $5{\times}5$ cells which tell us the identity of a grapheme receiving attention at one time and its relative position in the input layer respectively. It has been trained 10 simple vowel graphemes and 14 simple consonant graphemes and their spatial features. Some patterns which are not easily trained have been trained more extrensively. The trained nerwork which can classify indivisual graphemes with possible deformation, noise, size variance, transformation or retation wre then used to recongnize Korean syllabic characters using its selective attention mechanism for image segmentation task within a syllabic characters. On initial sample tests on input characters our model could recognize correctly up to 79%of the various test patterns of handwritten Korean syllabic charactes. The results of this study indeed show Neocognitron as a powerful model to reconginze deformed handwritten charavters with big size characters set via segmenting its input images as recognizable parts. The same approach may be applied to the recogition of chinese characters, which are much complex both in its structures and its graphemes. But processing time appears to be the bottleneck before it can be implemented. Special hardware such as neural chip appear to be an essestial prerquisite for the practical use of the model. Further work is required before enabling the model to recognize Korean syllabic characters consisting of complex vowels and complex consonants. Correct recognition of the neighboring area between two simple graphemes would become more critical for this task.