• 제목/요약/키워드: 역전파 학습 알고리즘

검색결과 290건 처리시간 0.024초

사운덱스 알고리즘을 적용한 신경망라 뉴로-처지 기법의 호스트 이상 탐지 (Host Anomaly Detection of Neural Networks and Neural-fuzzy Techniques with Soundex Algorithm)

  • 차병래;김형종;박봉구;조혁현
    • 정보보호학회논문지
    • /
    • 제15권2호
    • /
    • pp.13-22
    • /
    • 2005
  • 본 논문에서는 시스템 호출을 이용하여 이상 침입 탐지 시스템의 성능을 향상시키기 위해, 특징 선택과 가변 길이 데이터를 고정 길이 학습 패턴으로 변환 생성하는 문제를 해결하기 위한 사운덱스 알고리즘을 적용한 신경망 학습을 통하여 이상 침입 탐지의 연구를 하고자 한다. 즉, 가변 길이의 순차적인 시스템 호출 데이터를 사운덱스 알고리즘에 의한 고정 길이의 행위 패턴을 생성하여 역전파 알고리즘과 퍼지 멤버쉽 함수에 의해 신경망 학습을 수행하였다. 역전파 신경망과 뉴로-퍼지 기법을 UNM의 Sendmail Data Set을 이용하여 시스템 호출의 이상침입 탐지에 적용하여 시간과 공간 복잡도 그리고 MDL 측면에서 성능을 검증하였다.

확률적 근사법과 공액기울기법을 이용한 다층신경망의 효율적인 학습 (An Efficient Traning of Multilayer Neural Newtorks Using Stochastic Approximation and Conjugate Gradient Method)

  • 조용현
    • 한국지능시스템학회논문지
    • /
    • 제8권5호
    • /
    • pp.98-106
    • /
    • 1998
  • 본 논문에서는 신경망의 학습성능을 개선하기 위해 확룰적 근사법과 공액기울기법에 기초를 둔 새로운 학습방법을 제안하였다. 제안된 방법에서는 확률적 근사법과 공액기울기법을 조합 사용한 전역 최적화 기법의 역전파 알고리즘을 적용함으로써 학습성능을 최대한 개선할 수 있도록 하였다. 확률적 근사법은 국소최소점을 벗어나 전역최적점에 치우친 근사점을 결정해 주는 기능을 하도록 하며, 이점을 초기값으로 하여 결정론적 기법의 공액기울기법을 적용함으로써 빠른 수렴속도로 전역최적점으로의 수렴확률을 놓였다. 제안된 방법을 패리티 검사와 패턴 분류에 각각 적용하여 그 타당성과 성능을 확인한 결과 제안된 방법은 초기값을 무작위로 설정하는 기울기하강법에 기초를 둔 기존의 역전파 알고리즘이나 확률적 근사법과 기울기하강법에 기초를 둔 역전파 알고리즘에 비해 최적해로의 수렴 확률과 그 수렴속도가 우수함을 확인할 수 있었다.

  • PDF

GA를 이용한 신경망의 가중치 최적화 (Neural Network Weight Optimization using the GA)

  • 문상우;공성곤
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.374-378
    • /
    • 1998
  • 신경망은 복잡하게 나타나는 비선형성을 가지는 실제의 다양한 문제들에 적용이 가능할 뿐만 아니라, 정보들이 가중치에 분산되어 저장됨으로서 강인성을 가지고 있다. 그러나 전방향 다층 신경망 구조를 학습할 수 있는 역전파 알고리즘은 초기 가중치의 영향에 의하여 학습된 결과가 지역 최소점에 빠지기 쉬운 경향이 있다. 본 논문에서는 이러한 문제점을 해결하기 위한 한가지 방법으로서 유전자 알고리즘을 이용하여 전방향 다층 신경망의 가중치를 학습하여, 지역 최소점에 빠지지 않고 학습이 이루어짐을 보인다.

  • PDF

오류 역전파 알고리즘을 이용한 자기 공명 영상 자동 세그멘테이션 (Automatic segmentation of magnetic resonance images using error back-propagation algorithm)

  • 최재호;조범준
    • 한국통신학회논문지
    • /
    • 제22권11호
    • /
    • pp.2425-2431
    • /
    • 1997
  • 자기 공명 영상의 사용이 빈번해 짐에 따라 환자의 해부학적인 정확한 정보와 이를 빠르고 효과적으로 진단하는데 유용한 자동 영상 세그멘테이션 방법이 요구되고 있다. 본 논문에서는 오류 역전파 알고리즘으로 학습한 신경망을 이용하여 뇌의 자기 공명 영상을 자동적으로 세그멘테이션하는 방법을 제안한다. 특정 환자의 자기 공명 영상을 분할하여 학습시킨 신경망은 다른 환자의 자기 공명 영상도 자동적으로 세그멘테이션하여 뇌의 윤곽을 뚜렷하게 나타내었다.

  • PDF

오류 역전파 학습 알고리즘을 이용한 디지털 워터마킹에 대한 소유권 인증 (Copyright Authentication for Digital Watermarking using Error Backpropagation)

  • 최은주;서정의;차의영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (2)
    • /
    • pp.580-582
    • /
    • 1998
  • 인터넷의 보급으로 인하여 디지털 데이터의 복제가 확산됨에 따라 멀티미디어 데이터에 대한 소유권 보호와 인증에 대한 문제가 대두되고 있는 실정이다. 본 논문에서는 디지털 영상을 다중해상도 표현이 가능한 웨이브릿 변환(Wavelet Transform)을 통하여 저주파수 영역에 인간 시각으로 지각 할 수 없는 워터마크를 삽입하고, 삽입된 워터마크의 영상을 인증하기 위한 방법으로 오류 역전파 학습 알고리즘(Error Backpropagation)을 이용한 신경회로망적 접근방법을 제안한다. 워터마크를 추출하기 위해서는 원영상이 필요하고, 내장된 워터마크가 손실 압축과 필터링 등의 일반적인 영상 처리에 강인함을 실험 결과를 증명하고, 제안한 신경회로망적 접근방법이 좋은 결과를 나타냄으로 실험을 통하여 증명하였다.

  • PDF

정확한 근사화 능력을 갖는 CMAC 신경망 기반 퍼지 제어기의 설계 (A Design of the CMAC-based Fuzzy Logic Controller with an Accurate Approximation Ability)

  • 김대진;이한별
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.289-295
    • /
    • 1998
  • 본 논문은 빠른 학습과 정확한 근사 능력을 갖는 새로운 CMAC 신경망 기반 퍼지 제어기르 제안한다. 제안한 CMAC 신경망 기반 퍼지 제어기(CBFLC)는 한 학습 주기 동안 전향 및 역전파 연산시 신경망내 유닛중 극히 일부분만이 활성화되어 학습에 참가하므로 학습 시간이 매우 빠르고, 비퍼지화 연산시 소속 함수의 중심값 뿐 아니라 폭을 동시에 고려하여 정확한 근사화를 얻는다. 제안한 퍼지 제어기내 입?출력 소속 함수의 중심값 및 폭 등의 구조적 파라메터들은 역전파 알고리즘에 의해 갱신된다. 제안한 CMAC 신경망 기반 퍼지 제어기를 트럭 후진 주차문제에 적용하여 근사화 능력 및 제어 성능면에서 여러 다른 퍼지 제어기들과 비교한다.

  • PDF

Self-generation을 이용한 퍼지 지도 학습 알고리즘 (Fuzzy Supervised Learning Algorithm by using Self-generation)

  • 김광백
    • 한국멀티미디어학회논문지
    • /
    • 제6권7호
    • /
    • pp.1312-1320
    • /
    • 2003
  • 본 논문에서는 하나의 은닉층을 가지는 다층 구조 신경망이 고려되었다. 다층 구조 신경망에서 널리 사용되는 오루 역전파 학습 방법은 초기 가중치와 불충분한 은닉층 노드 수로 인하여 지역 최소화에 빠질 가능성이 있다. 따라서 본 논문에서는 퍼지 단층 퍼셉트론에 ART1을 결합한 방법으로, 은닉층의 노드를 자가 생성(self-generation)하는 퍼지 지도 학습 알고리즘을 제안한다. 입력층에서 은닉층으로 노드를 생성시키는 방식은 ART1을 수정하여 사용하였고, 가중치 조정은 특정 패턴에 대한 저장 패턴을 수정하도록 하는 winner-take-all 방식을 적용하였다. 제안된 학습 방법의 성능을 평가하기 위하여 학생증 영상을 대상으로 실험한 결과. 기존의 오류 역전파 알고즘보다 연결 가중치들이 지역 최소화에 위치할 가능성이 줄었고 학습 속도 및 정체 현상이 개선되었다.

  • PDF

신경망을 이용한 무선망에서의 채널 관리 기법 (A Channel Management Technique using Neural Networks in Wireless Networks)

  • 노철우;김경민;이광의
    • 한국정보통신학회논문지
    • /
    • 제10권6호
    • /
    • pp.1032-1037
    • /
    • 2006
  • 채널은 무선망에 있어서 한정된 주요 자원 중의 하나이다. 다양한 채널 관리 기법들이 제시되어 왔으며, 최근 들어 가드채널의 최적화 문제가 부각되고 있다. 본 논문에서는 신경망을 이용한 지능적인 채널 관리 기법을 제안한다. 신경망의 학습 데이터 생성과 성능분석을 위하여 SRN(Stochastic Reward Net) 채널 할당 모델이 개발된다. 제안된 기법에서 신경망은 지도학습 방법인 역전파 알고리즘을 이용하여 최적의 가드채널 값 g를 계산하도록 학습한다. 학습된 신경망을 이용하여 최적의 g를 계산하고, 이를 SRM모델에서 구해진 결과와 비교한다. 실험 결과는 신경망에서 구한 가드채널 수와 SRM모델로부터 구한 가드채널 수의 상대적 차이가 없음을 보여준다.

오차 역전파 알고리즘을 이용한 전파신호 추적 연구 (A Study of Radio Signal Tracking using Error Back Propagation)

  • 김홍기;김현빈;신욱현;이원돈
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2001년도 추계종합학술대회
    • /
    • pp.226-229
    • /
    • 2001
  • 전파신호의 추적은 국방을 비롯한 다양한 분야에서 여러 가지 기술 발전을 이루고 있다. 특히 시간의 경과에 따라 변경되는 PRI 및 주파수를 갖는 전파에 대해서는 Adaptable한 추적 능력을 필요로 한다. 본 논문에서는 다양하게 변하는 PRI 및 주파수 변경 신호들에 대해 지능적으로 적응해 가면서 추적할 수 있는 추적 방식을 제안하고 이를 실험하였다. 제안된 방식은 신경회로망의 오차 역전과 알고리즘을 이용한 방법으로, 모의 전파 신호를 시간 구간으로 나누어 학습하였고 이에 대한 성능 테스트를 한 결과 제안된 방법이 전파 신호를 효율적으로 추적할 수 있음을 확인하였다.

  • PDF

유전자 알고리즘 최적화 신경망을 이용한 학습 (A Learning Using GA Optimized Neural Networks)

  • 윤여창
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 추계학술발표대회
    • /
    • pp.27-29
    • /
    • 2008
  • 시스템 분석에 주로 사용하는 자료 중에는 비선형 자료와 시계열 등이 있다. 이들 자료는 그 함축적인 관계가 매우 복잡하여 전통적인 통계분석 도구로 분석하는데 어려움이 많다. 본 연구에서는 현실 세계에서 다양하게 나타나는 복잡성을 다루기 위하여 하이브리드 진화 신경망 모델링 접근 방법으로 자료를 모형화 하고 이를 통한 학습의 적합도를 살펴본다. 비선형 자료 등을 모형화하기 위한 학습은 역전파 신경망 기법을 이용한다. 학습의 효율을 높이기 의해서 격자감소 학습 알고리즘과 함께 이용하는 유전자 알고리즘은 네트워크 구조를 최적화 시킬 수 있는 초기가중값을 이용한 전역 최소값을 찾는데 이용한다. 학습 결과를 통해 제안된 하이브리드형 접근방법의 학습이 보다 효율적임을 살펴보기 위하여 유전자 알고리즘으로 최적화된 신경망 학습 알고리즘을 비선형 모의자료의 학습에 적용하여 보았다.