• 제목/요약/키워드: 역전파 신경회로망

검색결과 158건 처리시간 0.034초

역전파 신경회로망 기반의 단기시장가격 예측 (Locational Marginal Price Forecasting Using Artificial Neural Network)

  • 송병선;이정규;박종배;신중린
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.698-700
    • /
    • 2004
  • Electric power restructuring offers a major change to the vertically integrated utility monopoly. Deregulation has had a great impact on the electric power industry in various countries. Bidding competition is one of the main transaction approaches after deregulation. The energy trading levels between market participants is largely dependent on the short-term price forecasts. This paper presents the short-term System Marginal Price (SMP) forecasting implementation using backpropagation Neural Network in competitive electricity market. Demand and SMP that supplied from Korea Power Exchange (KPX) are used by a input data and then predict SMP. It needs to analysis the input data for accurate prediction.

  • PDF

영상복원을 위한 유전자기반 시스템 모델링 : 러프-퍼지엔트로피 (System Modeling based on Genetic Algorithms for Image Restoration : Rough-Fuzzy Entropy)

  • 박인규;황상문;진달복
    • 감성과학
    • /
    • 제1권2호
    • /
    • pp.93-103
    • /
    • 1998
  • 효율적이고 체계적인 퍼지제어를 위해 조작자의 제어동작을 모델링하거나 공정을 모델링하는 기법이 필요하고, 또한 퍼지 추론시에 조건부의 기여도(contribution factor)의 결정과 동작부의 제어량의 결정이 추론의 결과에 중요하다. 본 논문에서는 추론시 조건부의 기여도와 동작부의 세어량이 퍼지 엔트로피의 개념하에서 수행되는 적응 퍼지 추론시스템을 제시한다. 제시된 시스템은 전방향 신경회로망의 토대위에서 구현되며 주건부의 기여도가 퍼지 엔트로피에 의하여 구해지고, 동작부의 제어량은 확장된 퍼지 엔트로피에 의하여 구해진다. 이를 위한 학습 알고리즘으로는 역전파 알고리즘을 이용하여 조건부의 파라미터의 동정을 하고 동작부 파라미터의 동정에는 국부해에 보다 강인한 유전자 알고리즘을 이용하다. 이러한 모델링 기법을 임펄스 잡음과 가우시안 잡음이 첨가된 영상에 적용하여 본 결과, 영상복원시에 발생되는 여러 가지의 경우에 대한 적응성이 보다 양호하게 유지되었고, 전체영상의 20%의 데이터만으로도 객관적 화질에 있어서 기존의 추론 방법에 비해 향상을 보였다.

  • PDF

개선된 역전파 신경회로망을 이용한 온라인 필기체 숫자의 분류에 관한 연구 (On the Classification of Online Handwritten Digits using the Enhanced Back Propagation of Neural Networks)

  • 홍봉화
    • 정보학연구
    • /
    • 제9권4호
    • /
    • pp.65-74
    • /
    • 2006
  • The back propagation of neural networks has the problems of falling into local minimum and delay of the speed by the iterative learning. An algorithm to solve the problem and improve the speed of the learning was already proposed in[8], which updates the learning parameter related with the connection weight. In this paper, we propose the algorithm generating initial weight to improve the efficiency of the algorithm by offering the difference between the input vector and the target signal to the generating function of initial weight. The algorithm proposed here can classify more than 98.75% of the handwritten digits and this rate shows 30% more effective than the other previous methods.

  • PDF

적응 역전파 학습 알고리즘을 이용한 신경회로망 제어기 설계 (Direct Adaptive Control Based on Neural Networks Using An Adaptive Backpropagation Algorithm)

  • 최경미;최윤호;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1730-1731
    • /
    • 2007
  • In this paper, we present a direct adaptive control method using neural networks for the control of nonlinear systems. The weights of neural networks are trained by an adaptive backpropagation algorithm based on Lyapunov stability theory. We develop the parameter update-laws using the neural network input and the error between the desired output and the output of nonlinear plant to update the weights of a neural network in the sense that Lyapunove stability theory. Beside the output tracking error is asymptotically converged to zero.

  • PDF

퍼지논리와 다층 신경망을 이용한 로봇 매니퓰레이터의 위치제어 (Position Control of The Robot Manipulator Using Fuzzy Logic and Multi-layer Neural Network)

  • 김종수;전홍태
    • 한국지능시스템학회논문지
    • /
    • 제2권1호
    • /
    • pp.17-32
    • /
    • 1992
  • 로보트 매니퓰레이터의 신경 제어기 구성에 널리 사용하는 다층 신경회로망은 로보트의 불확실한 동적 파라메터 변화에 대한 강건한 학습 적응능력, 그리고 병렬 처리를 통한 실시간 제어등의 장점들을 갖고있다. 그러나 대표적인 학습방법인 오차 역전파(error back propagation) 알고리즘은 그 학습 속도가 느리다는 문제점을 갖는다. 본 논문에서는 불확실하고 애매한 정보를 언어적인 방법에 의해 효율적으로 처리할 수 있는 퍼지 논리 (fuzzy logic)를 도입하여 로보트 매니퓰레이터 신경 제어기의 학습 속도를 개선하기위한 한 방법을 제안한다. 제안된 제어기의 효용성은 PUMA 560 로보트의 모의 실험을 통해 입증된다.

  • PDF

Non-Lambertian면의 형상복원 (3D Shape Reconstruction of Non-Lambertian Surface)

  • 김태은;이말례
    • 한국멀티미디어학회논문지
    • /
    • 제1권1호
    • /
    • pp.26-36
    • /
    • 1998
  • 2차원 밝기 영상에서 3차원 정보를 얻는 문제는 컴퓨터 시각 연구에서 매우 중요한 분야를 차지하고 있다. 이러한 목적을 위해 먼저 2차원 영상을 취득할 때 카메라의 위치, 광원의 방향, 영상내 물체의 반사특성 등 본질적인 정보를 이용한다. 이중에서 물체의 표면 반사특성은 매우 중요한 단서가 된다. 과거에는 물체의 반사특성을 Lambertian 반사만을 전제하여 연구를 진행했지만 실세계의 물체는 대부분 Non-Lambertian 반사특성을 갖는다. 본 논문에서는 2차원 밝기 영상에서 물체의 반사특성을 해석하고, 반사특성 파라미터를 추정하여 물체의 형상을 복구하는 새로운 방법과 반사특성을 모르는 상황에서 신경회로망 학습에 의해 형상을 복구하는 방법을 제안한다. 물체의 반사특성은 전반사 성분과 난반사 성분을 함께 갖는 Non-Lambertian 면을 그 대상으로 하며, 이러한 반사특성은 전반사(Torrance-Sparrow) 모델과 난반사(Lambertian) 모델의 선형적인 합으로 설명될 수 있다. 본 논문에서 제안한 Photometric Matching은 주변 화소의 밝기 분포를 고려하여 참조영상과의 매칭을 통한 형상복구 알고리듬으로써 기존의 Photometric Stereo에 근본을 두고 있지만, 잡음 및 오차의 누적 정도가 향상되었다. 또한 물체의 반사특성을 모르는 상황에서 신경회로망 학습에 의한 형상복구방법을 제안한다. 이 방법은 역전파 학습알고리듬을 이용해 광원 방향에 따른 밝기값에 대해 면법선을 교사하여 형상을 결정한다.

  • PDF

신경회로망을 이용한 UPFC가 연계된 송전선로의 거리계전기에 관한 연구 (A Study on Distance Relay of Transmission UPFC Using Artificial Neural Network)

  • 이준경;박정호;이승혁;김진오
    • 조명전기설비학회논문지
    • /
    • 제18권6호
    • /
    • pp.37-44
    • /
    • 2004
  • 전력계통분야의 복합 대형화에 유연한 대처와 전력조류의 최적화 도모를 위해 사용되는 FACTS(Flexible AC Transmission System)기기 중 가장 유용한 UPFC(Unified Power Flow Controller)는 선로의 전압을 임의의 크기와 위상을 갖도록 제어하여 선로로 전송되는 유ㆍ무효전력을 총체적으로 보상하는 기능을 갖는다. 이런 UPEC가 계통에 연계되어 운영된다면 송전선로 매개변수가 변하기 때문에 계통의 영향을 많이 받는 거리계전기는 불필요한 오동작이 발생하게 된다. 즉 거리계전기에서 바라본 임피던스 영역(Impedance Zone)이 송전선로에 UPFC 연계시 각각의 보상 값에 의해 상당한 변화를 보임으로, 기존의 방식으로 정정된 Relay Setting Zone과 Adaptive Setting Zone은 현저한 오차가 발생하게 된다. 그러므로 계통에 연계된 UPFC의 운전 조건을 고려한 거리계전기 보호구간의 재설정이 필요하게 된다. 따라서 본 논문의 목적은 학습이 가능한 신경회로망(ANN)을 이용하여 거리계전기 동작의 신속성(Speed)을 기본으로 전력계통의 다양한 환경에 대해 거리계전기 응동 특성을 향상시키는데 있다. 학습 방법으로는 정적 및 동적인 비선형 시스템의 인식과 다변수 시스템에 적용 가능한 역전파 알고리즘(Back-propagation Algorithm)을 사용했다.

심실 조기 수축 비트 검출을 위한 딥러닝 기반의 최적 파라미터 검출 (Optimal Parameter Extraction based on Deep Learning for Premature Ventricular Contraction Detection)

  • 조익성;권혁숭
    • 한국정보통신학회논문지
    • /
    • 제23권12호
    • /
    • pp.1542-1550
    • /
    • 2019
  • 부정맥 분류를 위한 기존 연구들은 분류의 정확성을 높이기 위해 신경회로망(Artificial Neural Network), 퍼지(Fuzzy), 기계학습(Machine Learning) 등을 이용한 방법이 연구되어 왔다. 특히 딥러닝은 신경회로망의 문제인 은닉층 개수의 한계를 해결함으로 인해 오류 역전파 알고리즘을 이용한 부정맥 분류에 가장 많이 사용되고 있다. 딥러닝 모델을 심전도 신호에 적용하기 위해서는 적절한 모델선택과 파라미터를 최적에 가깝게 선택할 필요가 있다. 본 연구에서는 심실 조기 수축 비트 검출을 위한 딥러닝 기반의 최적 파라미터 검출 방법을 제안한다. 이를 위해 먼저 잡음을 제거한 ECG신호에서 R파를 검출하고 QRS와 RR간격 세그먼트를 추출하였다. 이후 딥러닝을 통한 지도학습 방법으로 가중치를 학습시키고 검증데이터로 모델을 평가하였다. 제안된 방법의 타당성 평가를 위해 MIT-BIH 부정맥 데이터베이스를 통해 각 파라미터에 따른 딥러닝 모델로 훈련 및 검증 정확도를 확인하였다. 성능 평가 결과 R파의 평균 검출 성능은 99.77%, PVC는 97.84의 평균 분류율을 나타내었다.

신경망을 이용한 자율이동로봇의 이동 경로 추종 (Moving Path Following of Autonomous Mobile Robot using Neural Network)

  • 주기세
    • 한국정보통신학회논문지
    • /
    • 제4권3호
    • /
    • pp.585-594
    • /
    • 2000
  • 생산현장이나 불확실한 환경에서 자율이동로봇의 정확한 경로 추종은 고전적 제어 알고리즘인 경우에 많은 단점을 갖고 있다. 본 논문에서는 오류 역전파 알고리즘을 기반으로 한 신경망을 이용하여 이동로봇이 바닥 위에 설치된 선을 따라갈 수 있도록 하였다. 로봇에 부착된 3 개의 센서들로부터 인식된 정보뿐만 아니라 센서들이 인식하지 못하는 영역에서도 10등분된 세밀한 정보가 입력패턴으로 학습되기 때문에 센서들이 인식하지 못하는 영역에서도 이동로봇은 라인을 따라 원활하게 이동한다. 로봇이 목적지까지 이동하는데 걸리는 시간이 단축되고 라인과의 오차를 최소화하는 효과를 가져온다. 제안된 신경회로망 제어기의 효과를 검증하기 위하여 이동로봇의 이동 각의 변화에 따른 두개의 모터의 속도 변화가 컴퓨터로 시뮬레이션 된다.

  • PDF

퍼지 추론 시스템 기반의 다중 신경회로망 제어기를 이용한 초음파 모터의 위치제어 (Fuzzy Inference System Based Multiple Neural Network Controllers for Position Control of Ultrasonic Motor)

  • 최재원;민병우;박운식
    • 한국정밀공학회지
    • /
    • 제18권4호
    • /
    • pp.209-218
    • /
    • 2001
  • Ultrasonic motors are newly developed motors which are expected to be useful as actuators in many practical systems such as robot arms or manipulators because of several advantages against the electromagnetic motors. However, the precise control of the ultrasonic motor is generally difficult due to the absence of appropriate and rigorous mathematical model. Furthermore, owing to heavy nonlinearity, the position control of a pendulum system driven by the ultrasonic motor has a problem that control method using multiple neural network controllers based on a fuzzy inference system that can determine the initial position of the pendulum in the beginning of control operation. In addition, and appropriate neural network controller that has been learned to operate well at the corresponding initial position is adopted by switching schemes. The effectiveness of the proposed method was verified and evaluated from real experiments.

  • PDF