• 제목/요약/키워드: 역전파 신경회로망

검색결과 158건 처리시간 0.029초

LVQ(Learning Vector Quantization)을 퍼지화한 학습 법칙을 사용한 퍼지 신경회로망 모델

  • 김용수
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2005년도 춘계학술대회
    • /
    • pp.186-189
    • /
    • 2005
  • 본 논문에서는 LVQ를 퍼지화한 새로운 퍼지 학습 법칙들을 제안하였다. 퍼지 LVQ 학습법칙 1은 기존의 학습률 대신에 퍼지 학습률을 사용하였는데 이는 조건 확률의 퍼지화에 기반을 두고 있다. 퍼지 LVQ 학습법칙 2는 클래스들 사이에 존재하는 입력벡터가 결정 경계선에 대한 정보를 더 가지고 있는 것을 반영한 것이다. 이 새로운 퍼지 학습 법칙들을 improved IAFC(Integrted Adaptive Fuzzy Clustering)신경회로망에 적용하였다. improved IAFC신경회로망은 ART-1 (Adaptive Resonance Theory)신경회로망과 Kohonen의 Self-Organizing Feature Map의 장점을 취합한 퍼지 신경회로망이다. 제안한 supervised IAFC 신경회로망 1과 supervised IAFC neural 신경회로망 2의 성능을 오류 역전파 신경회로망의 성능과 비교하기 위하여 iris 데이터를 사용하였는데 Supervised IAFC neural network 2가 오류 역전파 신경회로망보다 성능이 우수함을 보여주었다.

  • PDF

유전자기반 신경회로망과 Temporal Difference학습: 장기보드게임 (Genetic Algorithm based Neural Network and Temporal Difference Learning: Janggi Board Game)

  • 박인규
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2002년도 춘계학술발표논문집(상)
    • /
    • pp.308-314
    • /
    • 2002
  • 본 논문은 2인용 보드게임의 정보에 대한 전략을 학습할 수 있는 방법을 유전자기반 역전파 신경회로망과 Temporal Difference학습알고리즘을 이용하여 제안하였다. 학습의 과정은 역전파에 의한 초기학습에 이어 국부해의 단점을 극복하기 위하여 미세학습으로 유전자알고리즘을 이용하였다. 시스템의 구성은 탐색을 담당하는 부분과 기물의 수를 발생하는 부분으로 구성되어 있다. 수의 발생부분은 보드의 상태에 따라서 갱신되고, 탐색커널은 αβ탐색을 기본으로 유전자알고리즘을 이용하여 가중치를 최적화하는 유전자기반 역전파 신경회로망과 TD학습을 결합하여 게임에 대해 양호한 평가함수를 학습하였다. 일반적으로 많은 학습을 통하여 평가함수의 정확도가 보장되면 승률이 학습의 양에 비례함을 알 수 있었다.

  • PDF

비대칭 퍼지 학습률을 이용한 퍼지 신경회로망 모델 (Fuzzy Neural Network Model Using Asymmetric Fuzzy Learning Rates)

  • 김용수
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.101-105
    • /
    • 2005
  • 본 논문에서는 LVQ(Learning Vector Quantization)을 퍼지화한 새로운 퍼지 학습 법칙을 제안하였다. 퍼지 LVQ 학습 법칙 3은 기존의 학습률 대신에 퍼지 학습률을 사용하였는데, 기존의 LVQ와는 달리 비대칭인 학습률을 사용하였다. 기본의 LVQ에서는 분류가 맞거나 틀렸을 때 같은 학습률을 사용하고 부호만 달랐으나, 새로운 퍼지 학습 법칙에서는 분류가 맞거나 틀렸을 때 부호가 다를 뿐만 아니라 학습률도 다르다. 이 새로운 퍼지 학습 법칙을 무감독 신경회로망인 improved IAFC(Integrated Adaptive Fuzzy Clustering) 신경회로망에 적용하여 감독 신경회로망으로 변형하였다. Improved IAFC 신경회로망은 유연성이 있으면서도 안정성이 있다. 제안한 supervised IAFC 신경회로망 3의 성능과 오류 역전파 신경회로망의 성능을 비교하기 위하여 iris 데이터를 사용하였는데 Supervised IAFC 신경회로망 3가 오류 역전파 신경회로망보다 성능이 우수하였다.

  • PDF

신경회로망을 이용한 유도전동기의 속도 센서리스 방식에 대한 비교 (Comparison of Different Schemes for Speed Sensorless Control of Induction Motor Drives by Neural Network)

  • 국윤상;김윤호;최원범
    • 전력전자학회논문지
    • /
    • 제5권2호
    • /
    • pp.131-139
    • /
    • 2000
  • 일반적으로 시스템 인식과 제어에 이용하는 다층 신경회로망은 기존의 역전파 알고리즘을 이용한다. 그러나 결선강도에 대한 오차의 기울기를 구하는 방법이기 때문에 국부적 최소점에 빠지기 쉽고, 수렴속도가 매우 늦으며 초기 결선강도 값들이나 학습계수에 민감하게 반응한다. 이와 같은 단점을 개선하기 위하여 확장된 칼만 필터링 기법을 역전파 알고리즘에 결합하였으나 계산상의 복잡성 때문에 망의 크기가 증가하면 실제 적용할 수 없다. 최근 신경회로망을 선형과 비선형 구간으로 구분하고 칼만 필터링 기법을 도입하여 수렴속도를 빠르게 하고 초기 결선강도 값에 크게 영향을 받지 않도록 개선하였으나, 여전히 은닉층의 선형 오차값을 역전파 알고리즘에 의해서 계산하기 때문에 학습계수에 민감하다는 단점이 있다. 본 논문에서는 위에서 언급한 기존의 신경회로망 알고리즘의 문제점을 개선하기 위하여 은닉층의 목표값을 최적기법에 의하여 직접계산하고 각각의 결선강도 값은 반복최소 자승법으로 온라인 학습하는 알고리즘을 제안하고 이들 신경회로망 알고리즘과 비교하고자 한다. 여러 가지 시뮬레이션과 실험을 통하여 제안된 방법이 초기 결선강도에 크게 영향을 받지 않으며, 기존의 학습계수 선정에 따른 문제점을 해결함으로써 신경회로망 모델에 기초한 실시간 제어기 설계에 응용할 수 있도록 하였다. 또한, 유도전동기의 속도추정과 제어에 적용하여 좋은 결과를 보였다.

  • PDF

신경회로망에 의한 구간 벡터의 비선형 사상 (Nonlinear mappings of interval vectors by neural networks)

  • 권기택;배철수
    • 한국통신학회논문지
    • /
    • 제21권8호
    • /
    • pp.2119-2132
    • /
    • 1996
  • 본 연구에서는 구간 벡터의 비선형 사상의 근사를 행하기 위한 4가지 신경회로망의 학습 알고리즘을 제안한다. 제안된 방법에 있어서, 신경회로망의 학습에 이용되는 입출력 데이터 쌓은 구간으로 구성되어 있다. 첫번째 방법은 전처리된 학습용 데이터 상을 통상의 역전파 알고리즘에 직접 응용하는 것이고, 두번째 방법은 두 개의 역전파 알고리즘을 이용하는 것이다. 세번째 방법은 구간 입출력 데이터를 처리할 수 있는 역전파 알고리즘으로 확장한 것이다. 마지막 방법은 구간 결합강도 및 구간 역치를 가진 신경회로망으로 확장한 것이다. 제안된 이 방법들은 컴퓨터 시뮬레이션에 의해 서로 비교 평가된다.

  • PDF

클래스간의 거리를 고려한 학습법칙을 사용한 퍼지 신경회로망 모델 (Fuzzy Neural Network Model Using A Learning Rule Considering the Distance Between Classes)

  • 김용수;백용선;이세열
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 춘계학술대회 학술발표 논문집 제16권 제1호
    • /
    • pp.109-112
    • /
    • 2006
  • 본 논문은 클래스들의 대표값들과 입력 벡터와의 거리를 사용한 새로운 퍼지 학습법칙을 제안한다. 이 새로운 퍼지 학습을 supervised IAFC(Integrated Adaptive Fuzzy Clustering) 신경회로망에 적용하였다. 이 새로운 신경회로망은 안정성을 유지하면서도 유연성을 가지고 있다. iris 데이터를 사용하여 테스트한 결과 supervised IAFC 신경회로망 4는 오류 역전파 신경회로망과 LVQ 알고리즘보다 성능이 우수하였다.

  • PDF

신경회로망을 이용한 비선형 플랜트의 적응제어 (Adaptive controls for non-linear plant using neural network)

  • 정대원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.215-218
    • /
    • 1997
  • A dynamic back-propagation neural network is addressed for adaptive neural control system to approximate non-linear control system rather than static networks. It has the capability to represent the approximation of nonlinear system without mathematical analysis and to carry out the on-line learning algorithm for real time application. The simulated results show fast tracking capability and adaptive response by using dynamic back-propagation neurons.

  • PDF

비대칭 퍼지 학습률을 이용한 퍼지 신경회로망 모델 (Fuzzy Neural Network Model Using Asymmetric Fuzzy Learning Rates)

  • 김용수
    • 한국지능시스템학회논문지
    • /
    • 제15권7호
    • /
    • pp.800-804
    • /
    • 2005
  • 본 논문에서는 LVQ(Learning )rector Quantization)을 퍼지화한 새로운 퍼지 학습 법칙을 제안하였다. 퍼지 학습 법칙 3은 기존의 학습률 대신에 퍼지 학습률을 사용하였는데, 기존의 LVQ와는 달리 비대칭인 학습률을 사용하였다. 기존의 LVQ에서는 분류가 맞거나 틀렸을 때 같은 학습률을 사용하고 부호만 달랐으나, 새로운 퍼지 학습 법칙에서는 분류가 맞거나 틀렸을 때 부호가 다를 뿐만 아니라 학습률도 다르다. 이 새로운 퍼지 학습 법칙을 무감독 신경회로망인 improved IAFC (Integrated Adaptive Fuzzy Clustering) 신경회로망에 적용하여 감독 신경회로망으로 변형하였다. Improved IAFC 신경회로망은 유연성이 있으면서도 안정성이 있다. 제안한 supervised IAFC 신경회로망 3의 성능과 오류 역전파 신경회로망의 성능을 비교하기 위하여 iris 데이터를 사용하였는데, supervised IAFC 신경회로망 3가 오류 역전파 신경회로망보다 성능이 우수하였다.

은닉층 노드의 생성추가를 이용한 적응 역전파 신경회로망의 학습능률 향상에 관한 연구 (On the enhancement of the learning efficiency of the adaptive back propagation neural network using the generating and adding the hidden layer node)

  • 김은원;홍봉화
    • 대한전자공학회논문지TE
    • /
    • 제39권2호
    • /
    • pp.66-75
    • /
    • 2002
  • 본 논문에서는 역전파 신경회로망의 학습능률을 향상시키기 위한 방법으로 발생한 오차에 따라서 학습파라미터와 은닉층의 수를 적응적으로 변경시킬 수 있는 적응 역 전파 학습알고리즘을 제안하였다. 제안한 알고리즘은 역전파 신경회로망이 국소점으로 수렴하는 문제를 해결할 수 있고 최적의 수렴환경을 만들 수 있다. 제안된 알고리즘을 평가하기 위하여 배타적 논리합, 3-패리티 및 7${\times}$5 영문자 폰트의 학습을 이용하였다. 실험결과, 기존에 제안된 알고리즘들에 비하여 국소점에 빠지게 되는 경우가 감소하였고 약 17.6%~64.7%정도 학습능률이 향상하였다.

신경회로망을 이용한 Rank-Order 필터의 구현과 성능 평가 (Performance Evaluation and Implementation of Rank-Order Filter Using Neural Networks)

  • 윤숙;박동선
    • 한국통신학회논문지
    • /
    • 제26권6B호
    • /
    • pp.794-801
    • /
    • 2001
  • 본 논문에서는 rank-order 필터의 구현을 위해 세 가지 신경회로망의 구조를 제시하고 분석하며 용도를 제안한다. 첫 번째 신경회로망을 이용하여 2-입력 정렬기를 제안하고 이를 이용하여 계층적인 N-입력 정렬기를 구성한다. 두 번째로 입력 신호간의 상대적인 크기 정보를 이용하여 학습 패턴을 구성한 후 역전파 학습 기법을 이용하여 구현되는 순방향 신경회로망을 이용한 rank-order 필터를 구현한다. 세 번째로 신경회로망의 구조의 출력층에 외부 입력으로 순위 정보를 가지도록 하는 rank-order 필터를 순방향 신경회로망을 이용하여 구현한다. 그리고 이러한 제안된 기술들에 대해 확장성, 구조의 복잡도와 시간 지연 등에서의 성능을 비교, 평가한다. 2-입력 정렬기를 이용하는 방식은 확장이 용이하고 비교적 구조가 간단하나 입력 신호들의 정렬을 위해 신경회로망은 순환하는 구조를 가지며 입력 신호의 수에 비례하는 반복 연산 후에 결과를 얻게 된다. 반면에, 순방향 신경회로망을 이용한 rank-order 필터의 구현 방식은 이러한 반복 연산으로 인한 시간 지연을 줄일 수 있으나 상대적으로 복잡한 구조를 가진다.

  • PDF