부동소수점 제곱근 계산에 많이 사용하는 뉴톤-랍손 부동소수점 역수 제곱근 알고리즘은 일정한 횟수의 곱셈을 반복하여 역수 제곱근을 계산한다. 본 논문에서는 뉴톤-랍손 역수 제곱근 알고리즘의 반복 과정의 오차를 예측하여 오차가 정해진 값보다 작아지는 시점까지 반복 연산하는 알고리즘을 제안한다. `F`의 역수 제곱근 계산은 초기값 '$X_0={\frac{1}{\sqrt{F}}}{\pm}e_0$'에 대하여, '$X_{i+1}=\frac{{X_i}(3-e_r-{FX_i}^2)}{2}$, $i\in{0,1,2,{\ldots}n-1}$'을 반복한다. 중간 곱셈 결과는 소수점 이하 p 비트 미만을 절삭하며, 절삭 오차는 '$e_r=2^{-p}$' 보다 작다. p는 단정도실수에서 28, 배정도실수에서 58이다. '$X_i={\frac{1}{\sqrt{F}}}{\pm}e_i$'라고 하면 '$X_{i+1}={\frac{1}{\sqrt{F}}}-e_{i+1}$, $e_{i+1}{<}{\frac{3{\sqrt{F}}{{e_i}^2}}{2}}{\mp}{\frac{{Fe_i}^3}{2}}+2e_r$이 된다. '$|{\frac{\sqrt{3-e_r-{FX_i}^2}}{2}}-1|<2^{\frac{\sqrt{-p}{2}}}$'이면,'$e_{i+1}<8e_r$이 부동소수점으로 표현 가능한 최소값보다 작아지며, '$X_{i+1}\fallingdotseq{\frac{1}{\sqrt{F}}}$'이다. 본 논문에서 제안한 알고리즘은 입력 값에 따라서 곱셈 횟수가 다르므로, 평균 곱셈 횟수를 계산하는 방식을 도출하고, 여러 크기의 근사 역수 제곱근 테이블($X_0={\frac{1}{\sqrt{F}}}{\pm}e_0$)에서 단정도실수 및 배정도실수의 역수 제곱근 계산에 필요한 평균 곱셈 횟수를 계산한다 이들 평균 곱셈 횟수를 종래 알고리즘과 비교하여 본 논문에서 제안한 알고리즘의 우수성을 증명한다. 본 논문에서 제안한 알고리즘은 오차가 일정한 값보다 작아질 때까지만 반복하므로 역수 제곱근 계산기의 성능을 높일 수 있다. 또한 최적의 근사 역수 제곱근 테이블을 구성할 수 있다. 본 논문의 연구 결과는 디지털 신호처리, 컴퓨터 그라픽스, 멀티미디어, 과학 기술 연산 등 부동소수점 계산기가 사용되는 분야에서 폭 넓게 사용될 수 있다.
다음은 부동소수점 역수 및 역제곱근 계산에 많이 사용하는 뉴톤-랍손 알고리즘은 일정한 횟수의 곱셈을 반복하여 계산한다. 본 논문에서는 뉴톤-랍손 알고리즘의 반복 과정의 오차를 예측하여 오차가 정해진 값보다 작아지는 시점까지 반복 연산하는 개선된 뉴톤-랍손 알고리즘을 제안한다. 본 논문에서 제안한 알고리즘은 입력 값에 따라서 곱셈 횟수가 다르므로, 평균 곱셈 횟수를 계산하는 방식을 유도하고, 여러 크기의 근사 테이블에서 단정도실수 및 배정도실수의 역수 및 역제곱근 계산에 필요한 평균 곱셈 횟수를 산출한다. 이들 평균 곱셈 횟수를 종래 알고리즘과 비교하여 본 논문에서 제안한 알고리즘의 우수성을 증명한다. 본 논문에서 제안한 알고리즘은 오차가 일정한 값보다 작아질 때까지만 반복 연산을 수행하므로 역수 및 역제곱근 계산기의 성능을 높일 수 있고 최적의 근사 테이블을 구성할 수 있다. 본 논문의 연구 결과는 디지털 신호처리, 컴퓨터 그라픽스, 멀티미디어, 과학 기술 연산 등 부동소수점 계산기가 사용되는 분야에서 폭 넓게 사용될 수 있다.
본 논문에서는 변형된 Newton-Raphson 알고리즘과 LUT(Look Up Table)를 사용하는 역제곱근 연산기를 제안한다. Newton-Raphson 부동소수점 역수 알고리즘은 일정한 횟수의 곱셈을 반복하여 역수 제곱근을 계산하는 방식이다. 변형된 Newton-Raphson 알고리즘은 하드웨어 구현에 적합하도록 변환되었으며, LUT는 오차를 줄이기 위해 개선되었다. 제안된 연산기는 LUT의 크기를 최소화하고, 순환적인 구조가 아닌 2-stage pipeline 구조를 가진다. 또한 IEEE-754 부동소수점 표준을 기초로 하는 24-bit 데이터 형식을 사용해 면적과 속도 향상에 유리하여 휴대용 기기의 멀티미디어 분야의 응용에 적합하다. 본 역제곱근 연산기는 소수점 이하 8-bit의 정확도를 가지며 VHDL을 이용하여 설계되었다. 그 크기는 $0.18{\mu}m$ CMOS 공정에서 약 4,000 gate의 크기를 보였으며 150MHz에서 동작이 가능하다.
현재 한강수계를 제외한 3대강 수계에서 수질오염총량관리제도가 의무제로써 시행되고 있다. 그러나 과학적 타당성과 외국의 성공사례들로 하여금 한강수계에 대해서도 수질오염총량제도를 의무제화 하려는 시도가 추진되고 있고 있는 실정이다. 이 제도가 한강수계에도 도입된다면, 한강권역에 포함되는 모든 지자체는 해당 유역에서 하천으로 유입되는 배출부하량을 할당받은 할당부하량 이하로 관리하여야만 정해진 유역의 목표수질을 달성할 수 있으며, 배출부하량 관리를 계획한데로 이행하지 못한 지자체는 범칙금 내지는 행정제재를 받게 된다. 따라서 체계적이고 과학적인 모니터링 및 분석 수단이 필요하다. 이 연구는 환경부 고시 한강기술지침에 의거하여 GIS를 이용하여 인천일대의 오폐수 발생부하량 및 배출부하량을 제시하고 과학적인 오염물질 삭감방안을 모색하는 것을 목적으로 진행되었다. 생활계, 산업계, 축산계, 양식계의 4 가지로 분류된 점오염원과 토지 이용 분류에 따른 비점오염원에 대한 각각의 발생부하량을 GIS를 통해 산정하고, 모든 오염원별로 처리경로를 고려하고 처리시설별, 방법별 삭감 효율을 반영하여 배출부하량을 산정하여 GIS상에서 제시하고 분석하였다. 인천일대는 인근지역에 비해 인구밀도가 높고 산업단지가 발달하여 생활계와 산업계 오염원에 의한 발생부하량 및 배출부하량이 많았으며, 특정 오염물에 대해서는 삭감 계획이 필요함을 확인할 수 있었다. 따라서 수질오염총량관리제도에 대비하고 실제 수질 개선을 위하여 본 연구의 결과를 바탕으로 수질관리를 위한 시스템의 보완 및 삭감계획의 수립에 관한 연구가 필요하다.알 수 있었다. 이상의 결과를 토대로 기존 압출추출방법과 초임계 추출 방법을 비교한 결과 $\gamma$-토코페롤의 농도가 1.3${\~}$1.6배 증가함을 확인할 수 있었다.게 상관성이 있어 앞으로 심도 있는 연구가 더욱 필요하다.qrt{F}}}{\pm}e_0$)에서 단정도실수 및 배정도실수의 역수 제곱근 계산에 필요한 평균 곱셈 횟수를 계산한다 이들 평균 곱셈 횟수를 종래 알고리즘과 비교하여 본 논문에서 제안한 알고리즘의 우수성을 증명한다. 본 논문에서 제안한 알고리즘은 오차가 일정한 값보다 작아질 때까지만 반복하므로 역수 제곱근 계산기의 성능을 높일 수 있다. 또한 최적의 근사 역수 제곱근 테이블을 구성할 수 있다. 본 논문의 연구 결과는 디지털 신호처리, 컴퓨터 그라픽스, 멀티미디어, 과학 기술 연산 등 부동소수점 계산기가 사용되는 분야에서 폭 넓게 사용될 수 있다.>16$\%$>0$\%$ 순으로 좋게 평가되었다. 결론적으로 감농축액의 첨가는 당과 탄닌성분을 함유함으로써 인절미의 노화를 지연시키고 저장성을 높이는데 효과가 있는 것으로 생각된다. 또한 인절미를 제조할 때 찹쌀가루에 8$\%$의 감농축액을 첨가하는 것이 감인절미의 색, 향, 단맛, 씹힘성이 적당하고 쓴맛과 떫은맛은 약하게 느끼면서 촉촉한 정도와 부드러운 정도는 강하게 느낄수 있어서 전반적인 기호도에서 가장 적절한 방법으로 사료된다.비위생 점수가 유의적으로 높은 점수를 나타내었다. 조리종사자의 위생지식 점수와 위생관리
부동소수점 제곱근 계산에 많이 사용하는 골드스미트 제곱근 알고리즘은 곱셈을 반복하여 제곱근을 계산한다. 본 논문에서는 골드스미트 제곱근 알고리즘의 반복 과정의 오차를 예측하여 오차가 정해진 값보다 작아지는 시점까지 반복 연산하는 알고리즘을 제안한다. 'F'의 제곱근 계산은 초기값 $X_0=Y_0=T^2{\times}F,\;T=\frac{1}{\sqrt {F}}+e_t$에 대하여, $R_i=\frac{3-e_r-X_i}{2},\;X_{i+1}=X_i{\times}R^2_i,\;Y_{i+1}=Y_i{\times}R_i,\;i{\in}\{{0,1,2,{\ldots},n-1} }}'$을 반복한다 곱셈 결과는 소수점 이하 p 비트 미만을 절삭하며, 절삭 오차는 $e_r=2^{-p}$보다 작다. p는 단정도실수에서 28, 배정도실수에서 58이다. $X_i=1{\pm}e_i$ 이면 $X_{i+1}$ = $1-e_{i+1}$$e_{i+1} {\frac{3e^2_i}{4}{\mp}\frac{e^3_i}} $ +4$e_{r}$이다. $|X_i-1|$ < $2^{\frac{-p+2}{2}}$이면, $e_{i+1}$ < $8e_{r}$ 이 부동소수점으로 표현할 수 있는 최소값보다 작게 되며, $\sqrt{F}${\fallingdotseq}\frac{Y_{i+1}}{T}}$이다. 본 논문에서 제안한 알고리즘은 입력 값에 따라서 곱셈 횟수가 다르므로, 평균 곱셈 횟수를 계산하는 방식을 도출하고, 여러 크기의 근사 역수 제곱근 테이블 ($T=\frac{1}{\sqrt{F}}+e_i$)에서 단정도실수 및 배정도실수의 제곱근 계산에 필요한 평균 곱셈 횟수를 계산한다. 이들 평균 곱셈 횟수를 종래 알고리즘과 비교하여 본 논문에서 제안한 알고리즘의 우수성을 증명한다. 본 논문에서 제안한 알고리즘은 오차가 일정한 값보다 작아질 때까지만 반복하므로 제곱근 계산기의 성능을 높일 수 있다. 또한 최적의 근사 역수 제곱근 테이블을 구성할 수 있다. 본 논문의 연구 결과는 디지털 신호처리, 컴퓨터 그래픽스, 멀티미디어, 과학 기술 연산 등 부동소수점 계산기가 사용되는 분야에서 폭 넓게 사용될 수 있다.
칩 스택 패키지에 적용을 위해 폭 $75{\sim}10\;{\mu}m$, 길이 3mm의 트랜치 비아에 대해 도금전류밀도 및 rotating disc electrode(RDE)의 회전속도에 따른 Cu filling 특성을 분석하였다. RDE 속도가 증가함에 따라 트랜치 비아의 Cu filling 특성이 향상되었다. 트랜치 비아의 반폭 길이, 즉 트랜치 비아 폭의 1/2 길이와 이 트랜치 비아에 대해 95% 이상의 Cu filling 비를 얻기 위한 RDE 최소속도 사이에는 Nernst 관계식이 성립하여, 95%이상의 Cu filling비를 얻을 수 있는 최소 트랜치 비아의 반폭 길이는 RDE 속도의 제곱근의 역수에 직선적으로 비례하였다.
3차원 그래픽 API인 OpenGL과 Direct3D를 효율적으로 처리하기 위해 sine, cosine, 역수, 역제곱근, 지수 및 로그 연산을 처리하는 부동소수점 연산회로를 설계하였다. 고속 연산과 2 ulp 보다 작은 오차를 만족시키기 위해 2차 최대최소 근사 방식과 테이블 룩업 방식을 사용하였다. 설계된 회로는 65nm CMOS 표준 셀 조건에서 2.3-ns의 최대 지연시간을 갖고 있으며, 약 23,300 게이트로 구성된다. 최대 400 MFLOPS의 연산 성능과 높은 정밀도로, 설계한 연산회로는 3차원 모바일 그래픽 분야에 효율적으로 적용 가능하다.
본 연구의 목적은 터어빈 회전차를 모델로한 복합회전형 히이트파이프의 전열특성을 실험과 유한요소의 해석법에 의하여 연구한 것이다. 입열량과 회전수에 따른 Nu, Re, Pr 그리고 무차원 응축액막두께가 변수로 사용되었다. 해석과 실험치는 거의 유사한 경향으로 일치하였으며, 연구결과는 복합히이트파이프 성능예측을 하는데 도움을 주었다. 복합회전형 히이트파이프에서의 열저항은 응축액막두께가 감소함에 따라 응축부의 열전달은 급격히 증가하였고, 응축액막두께는 복합회전형 히이트파이프의 전열 특성에 가장 큰 영향을 주었다. 주어진 Pr에서 Re가 변화함에 따라 무차원 응축액막두께가 일정한값으로 나타났고,무차원 응축액막두께는 회전수의 역수의 제곱근에 비례하였다. 본 연구의 해석적 방법에 의해서 Nu=A$({\delta}({\omega}/v)^{-1/2}Re^B)$라는 식을 구했고, 이때 A=0.963, B=0.5025의 값을 얻었다.
본 논문에서는 실시간 3D 가속을 효과적으로 하기 위해 기하학 처리 과정에 적합한 부동 소수점 연산기를 설계하였다. 설계한 부동 소수점 연산기는 IEEE-754 단정도 형식을 지원하도록 하여 기하학 처리에 적합하게 하였고 설계한 부동 소수점 연산기는 Xilinx-Vertex2에서 부동소수점 덧셈/곱셈기는 100 MHz, 부동소수점 NR 역수 계산기는 120 MHz, 부동 소수점 멱승기는 200 MHz, 부동 소수점 역 제곱근 연산기는 120 MHz의 동작 주파수를 각각 확인 하였다. 또한 설계된 부동소수점 연산기를 이용해 실제 기하학 프로세서를 구현하여 실제 3B 데이터 처리를 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.