• 제목/요약/키워드: 역문서 빈도 가중치

검색결과 11건 처리시간 0.021초

용어 가중치와 역범주 빈도에 의한 자동문서 범주화 (Automatic Text Categorization by Term Weighting and Inverted Category Frequency)

  • 이경찬;강승식
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2003년도 제15회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.14-17
    • /
    • 2003
  • 문서의 확률을 이용하여 자동으로 문서를 분류하는 문서 범주화 기법의 대표적인 방법이 나이브 베이지언 확률 모델이다. 이 방법의 기본 형식은 출현 용어의 확률 계산 방법이다. 하지만 실제 문서 범주화 과정에서 출현하지 않는 용어들도 성능에 많은 영향을 줄 수 있으며, 출현 용어들에 대한 빈도 이외의 역범주 빈도나 용어가중치를 적용하여 문서 범주화 시스템의 성능을 향상시킬 수 있다. 본 논문에서는 나이브 베이지언 확률 모델에 출현 용어와 출현하지 않는 용어들에 대한 smoothing 기법을 적용하여 실험하였다. 성능 평가를 위해 뉴스그룹 문서들을 이용하였으며, 역범주 빈도와 가중치를 적용했을 때 나이브 베이지언 확률 모델에 비해 약 7% 정도 성능 개선 효과가 있었다.

  • PDF

한국어 정보검색에서의 복합명사 가중치 부여 방법 및 평가 (Weighting Methods and their Evaluations for Compound Nouns in Korean Text Retrieval)

  • 김지영;맹성현
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2001년도 제13회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.157-162
    • /
    • 2001
  • 한국어의 경우 띄어쓰기의 자유로움과 명사들이 비교적 자유롭게 결합하여 새로운 복합명사(compound noun)를 형성한다. 따라서, 정보검색에서 복합명사를 적절하게 처리하게 되면 검색 효율을 향상시킬 수 있다. 본 논문에서는 질의에 포함된 단일명사, 복합명사, 그리고 복합명사를 이루는 구성명사의 적절한 가중치 부여 방법에 대하여 기술한다. 일반적인 tf*idf가중치 방법은 문서 내 빈도수(tf)만을 강조하여 문서 내 발생빈도가 낮은 복합명사의 경우 낮은 가중치를 갖는다. 반대로, 역문헌 빈도수(idf)로 인해 복합명사가 단일명사보다 높은 가중치를 갖게 되면 단일명사의 가중치를 지나치게 떨어뜨려 검색 성능을 저하시킨다. 이런 문제를 해결하기 위해서 복합명사의 통계적인 특성을 고려하고, 복합명사를 이루는 구성명사의 적절한 가중치 사용과 tf*idf 변화 범위에 따른 파라메터를 이용하였다. 결과적으로 본 논문에서는 질의 색인어의 종류에 따라 가중치를 달리 부여함으로써 검색 성능을 향상시킬 수 있는 가중치 부여 방법을 제시하고 검증 실험을 통해 유효성을 제시했다는 점에서 그 의의가 있다고 하겠다.

  • PDF

텍스트 마이닝 기법을 이용한 경찰청 업무 트렌드 분석 (Analysis of the National Police Agency business trends using text mining)

  • 선현석;임창원
    • 응용통계연구
    • /
    • 제32권2호
    • /
    • pp.301-317
    • /
    • 2019
  • 최근 통계적인 기법을 이용하여 대량으로 생산되고 있는 텍스트 데이터를 통해 다양한 인사이트 발굴을 하기 위한 연구가 활발히 진행되고 있다. 본 연구는 경찰청에서 생산하는 텍스트 데이터를 통해 연도별 경찰청의 업무 트렌드를 파악하고, 각 지방청별로 생산되는 문서에서 주요 키워드를 파악하여 지방청 간의 업무 특성을 비교하고자 하였다. 의미 있는 결론을 도출하기 위해 각 자료 특성에 맞는 전처리 과정을 시행하고 문서별 단어 빈도수를 계산하였다. 문서에 나타난 키워드의 단순 출현 빈도로는 해당 키워드가 문서에서 갖는 중요도를 설명하기 힘들기 때문에 단어-역문서 가중치를 이용하여 각 단어에 대한 빈도수를 새롭게 계산하였고 단어의 문서별 및 연도별 빈도 비교를 위해 L2 정규화 기법을 이용하였다. 이러한 분석은 향후 경찰청 업무 개선 정책에 새롭게 활용될 수 있는 기초 자료로 사용될 수 있으며, 경찰청 업무 효율성 향상 및 청내 업무 개선 수요 파악을 위한 방법으로 활용될 수 있다.

에세이의 창의성 분류를 위한 어텐션과 역문서 빈도 기반의 자기부호화기 모델 (An AutoEncoder Model based on Attention and Inverse Document Frequency for Classification of Creativity in Essay)

  • 정세진;김덕기;온병원
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.624-629
    • /
    • 2022
  • 에세이의 창의성을 자동으로 분류하는 기존의 주요 연구는 말뭉치에서 빈번하게 등장하지 않는 단어에 초점을 맞추어 기계학습을 수행한다. 그러나 이러한 연구는 에세이의 주제와 상관없이 단순히 참신한 단어가 많아 창의적으로 분류되는 문제점이 발생한다. 본 논문에서는 어텐션(Attention)과 역문서 빈도(Inverse Document Frequency; IDF)를 이용하여 에세이 내용 전달에 있어 중요하면서 참신한 단어에 높은 가중치를 두는 문맥 벡터를 구하고, 자기부호화기(AutoEncoder) 모델을 사용하여 문맥 벡터들로부터 창의적인 에세이와 창의적이지 않은 에세이의 특징 벡터를 추출한다. 그리고 시험 단계에서 새로운 에세이의 특징 벡터와 비교하여 그 에세이가 창의적인지 아닌지 분류하는 딥러닝 모델을 제안한다. 실험 결과에 따르면 제안 방안은 기존 방안에 비해 높은 정확도를 보인다. 구체적으로 제안 방안의 평균 정확도는 92%였고 기존의 주요 방안보다 9%의 정확도 향상을 보였다.

  • PDF

제목의 단어 가중치를 이용한 중등학교 공문서 자동분류시스템 (An Automatic Classification System of Official Documents in Middle Schools Using Term Weighting of Titles)

  • 강현희;진민
    • 정보교육학회논문지
    • /
    • 제7권2호
    • /
    • pp.219-226
    • /
    • 2003
  • 현재 일선 학교와 교육기관의 공문서 분류는 아직도 수작업으로 처리되고 있어 많은 시간이 소요된다. 이러한 문제점을 해결하기 위해 본 논문은 문서 제목의 단어 정보를 이용한 자동 문서 분류 방법을 제안한다. 먼저 기존 문서의 제목 단어 중에서 의미 있는 단어를 추출하여 각 단어에 대해 범주별로 역문헌 빈도(IDF) 가중치를 계산한 후 단어 가중치 사전을 구축한다. 문서의 분류 요구가 들어오면 구축된 단어 가중치 사전을 이용하여 문서 제목에 포함된 단어들의 범주별 가중치 합을 비교하여, 범주별 가중치 합이 최대인 범주로 문서를 분류한다. 실제 중등학교에서의 공문서를 대상으로 제안된 방법의 분류 성능을 평가하였다.

  • PDF

문서 분류를 위한 문장 응집도와 주어 주도의 주제어 추출 (Sentence Cohesion & Subject driving Keywords Extraction for Document Classification)

  • 안희국;노희영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.463-465
    • /
    • 2005
  • 문서분류 시 문서의 내용을 표현하기 위한 자질로서 사용되는 단어의 출현빈도정보는 해당 문서의 주제어를 표현하기에 취약한 점을 갖고 있다. 즉, 키워드가 문장에서 어떠한 목적(의미)으로 사용되었는지에 대한 정보를 표현할 수가 없고, 문장 간의 응집도가 강한 문장에서 추출되었는지 아닌지에 대한 정보를 표현할 수가 없다. 따라서, 이 정보로부터 문서분류를 하는 것은 그 정확도에 있어서 한계를 갖게 된다. 본 논문에서는 이러한 문서표현의 문제를 해결하기위해, 키워드를 선택할 때, 자질로서 문장의 역할(주어)정보를 추출하여 가중치 부여방식을 통하여 주어주도정보량을 추출하였다. 또한, 자질로서 문장 내 키워드들의 동시출현빈도 정보를 추출하여 문장 간 키워드들의 연관성정도를 시소러스에 담아내었다. 그리고, 이로부터 응집도 정보를 추출하였다. 이 두 정보의 통합으로부터 문서 주제어를 결정함으로서, 문서분류를 위한 주제어 추출 시 불필요한 키워드의 삽입을 줄이고, 동시 출현하는 키워드들에 대한 선택 기준을 제공하고자 하였다. 실험을 통해 한번 출현한 키워드라도, 문장을 주도하는 주어로서 사용될 경우와 응집도 가중치가 높을 경우에 주제어로서의 선택될 가능성이 향상되고, 문서분류를 위해 좀 더 세분화된 키워드 점수화가 가능함을 확인하였다. 따라서, 선택된 주제어가 문서분류의 정확도에 있어서 향상을 가져올 수 있을 것으로 기대한다.

  • PDF

고속도로 톨게이트 교통사고 유형화 및 네트워크 클러스터링 기반 톨게이트 개선방안 수립 연구 (Study on the Establishment of Tollgate Improvement Measures through Categorization of Expressway Tollgate Accidents and Network Clustering)

  • 김인영;정한솔;박상민;이광섭;윤일수
    • 한국ITS학회 논문지
    • /
    • 제23권5호
    • /
    • pp.1-17
    • /
    • 2024
  • 국내 톨게이트는 하이패스 차로와 Toll Collection System(TCS) 차로가 공존하는 복잡한 형태로 설계되어 있어 해당 구간에서 교통사고가 빈번히 발생하고 있다. 정부에서는 교통사고 예방을 위해 교통사고 요인 분석을 기반으로 톨게이트 개선방안을 도출하고 개선해오고 있으나 여전히 교통사고가 끊이지 않고 있다. 다만, 톨게이트는 단거리이지만 주행 시 인지해야 할 상황과 이벤트들이 다수 존재해 교통사고 분석 시 상황과 요인 등을 복합적으로 고려할 필요가 있다. 따라서 본 연구에서는 교통사고 내용 데이터에 역문서 빈도 가중치를 적용하여 교통사고 요인과 상황을 도출하였으며, 그 이후 톨게이트 교통사고를 유형화하였다. 유형화 결과를 바탕으로 네트워크 클러스터링을 수행하여 실효성 높은 톨게이트 개선방안을 제안하였다.

유즈넷 정보검색시스템에서 단어 가중치 적용방법에 관한연구 (Research of Term-Weighting Method in an Usenet Information Retrieval System)

  • 최재덕;최진석;박민식
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (1)
    • /
    • pp.339-341
    • /
    • 1998
  • 다양한 정보교환 수단의 하나인 유즈넷은 방대한 정보량을 가진다. 사용자는 유즈넷에서 필요한 정보를 쉽게 찾지 못하므로 뉴스그룹 전체와 본문에서 정보 검색의 필요성을 인식하고 있다. 이 논문에서는 정보검색시스템을 유즈넷으로 확장시 단어 가중치 적용방법의 개선을 통해 검색효율을 향상시키고자 한다. 정보검색에서 단어의 중요도에 영향을 미치는 tf, idf 이외의 다른 요소인 카테고리빈도(category frequency, cf)를 활용하여 tf*idf방법에 역카테고리빈도(inverted categoary frequency, icf)를 고려한 유사도 계산 방법을 제시하고 이를 검증하였다. 실험 결과에서 상위 30위 내의 평균 적합문서의 수가 tf*{{{{ SQRT {idf$^2$+icf$^2$} }}}}방법이 tf*idf 방법보다 4.6% 향상됨을 알 수 있다.

A Comparative Study on Requirements Analysis Techniques using Natural Language Processing and Machine Learning

  • Cho, Byung-Sun;Lee, Seok-Won
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권7호
    • /
    • pp.27-37
    • /
    • 2020
  • 본 연구의 목적은 다양한 도메인에 대한 소프트웨어 요구사항 명세서로부터 수집된 요구사항을 데이터로 활용하여 데이터 중심적 접근법(Data-driven Approach)의 연구를 통해 요구사항을 분류한다. 이 과정에서 기존 요구사항의 특징과 정보를 바탕으로 다양한 자연어처리를 이용한 데이터 전처리와 기계학습 모델을 통해 요구사항을 기능적 요구사항과 비기능적 요구사항으로 분류하고 각 조합의 결과를 제시한다. 그 결과로, 요구사항을 분류하는 과정에서, 자연어처리를 이용한 데이터 전처리에서는 어간 추출과 불용어제거와 같은 토큰의 개수와 종류를 감소하여 데이터의 희소성을 좀 더 밀집형태로 변형하는 데이터 전처리보다는 단어 빈도수와 역문서 빈도수를 기반으로 단어의 가중치를 계산하는 데이터 전처리가 다른 전처리보다 좋은 결과를 도출할 수 있었다. 이를 통해, 모든 단어를 고려하여 가중치 값은 기계학습에서 긍정적인 요인을 볼 수 있고 오히려 문장에서 의미 없는 단어를 제거하는 불용어 제거는 부정적인 요소로 확인할 수 있었다.

웹 크롤링에 의한 네이버 뉴스에서의 한국농수산대학 - 키워드 분석과 의미연결망분석 - (Korea National College of Agriculture and Fisheries in Naver News by Web Crolling : Based on Keyword Analysis and Semantic Network Analysis)

  • 주진수;이소영;김승희;박노복
    • 현장농수산연구지
    • /
    • 제23권2호
    • /
    • pp.71-86
    • /
    • 2021
  • 빅데이터 분석기술인 웹 크롤링 기술을 이용하여 네이버 뉴스 데이터 내에 담겨 있는 '한농대' 에 대한 이미지 단어를 추출하였다. 뉴스 기사에서 언급된 빈도에 따라 중요한 단어로 평가는 단어빈도 분석에서는 청년농업인을 육성하는 한농대의 특성을 잘 설명하는 '농업', '교육', '지원', '농업인', '청년', '대학', '사업', '농촌', '대표' 등의 단어가 자주 사용되는 것으로 나타났다. 또한 '디지털', '스마트', '드론', '졸업생', '창업', '새만금', '교육과정' 등 디지털 농업 전문 인재를 육성하기 위한 학교의 교육, 지원, 비전 등과 관련한 단어들이 추출되었다. 모든 기사 데이터의 단어 빈도(TF) 및 역 문서 빈도(IDF)를 이용한 TF-IDF 가중치의 전체 순위는 '농업인', '드론', '농림축산식품부', '전북', '청년농업인', '농업', '전주', '대학', '장치', '파종' 등의 단어가 한농대와 관련된 뉴스 기사에서 중요한 핵심어 역할을 하는 것으로 나타났다. 단어 빈도에서 '드론', '농림축산식품부', '전북', '청년농업인', '전주', '장치, '파종' 등은 순위가 매우 낮았으나 TF-IDF 가중치 순위에서는 한농대를 표현하는 핵심어로 나타났다. TF-IDF 평가에서 '교육', '지원', '청년', '사업', '농촌' 등의 키워드는 단어빈도가 높으면서 많은 문서에서 자주 등장하는 키워드로서 핵심어 역할은 크지 않은 것으로 나타났다. 단어 간 연계성을 파악하기 위한 의미연결망 분석에서 추출한 바이그램은 '청년'-'농업인', '디지털'-'농업', '영농'-'정착', '농업'-'농촌', '디지털'-'전환' 등의 순으로 빈도가 높게 나타났다. 중심성 지표로 키워드의 영향력을 평가한 결과 모든 지표에서 '농업'이 1위로 나타났으며, 2위에는 '농업인'(근접 중심성, 매개 중심성), '교육'(연결 중심성, 페이지랭크 중심성) 및 '미래'(고유벡터 중심성)으로 나타났다. 스피어먼 순위 상관계수에 의한 중심성 지표별 키워드의 순위의 유사성은 연결 중심성과 페이지랭크 중심성이 0.89 전후의 가장 높은 상관관계를 보였다. 이상으로 네이버 뉴스의 한농대 관련 기사에서 단어 빈도로 보면 '농업', '교육', '지원', '농업인', '청년', '대학', '사업', '농촌', '대표' 등이 중요한 단어로 평가되었으나, 문서빈도를 함께 고려한 평가에서는 '농업인', '드론', '농림축산식품부', '전북', '청년농업인', '농업', '전주', '대학', '장치', '파종' 등의 단어가 핵심어 역할을 하는 것으로 나타났다. 한편 단어나 문서의 빈도가 아니라 단어 간 네트워크 연계성을 고려한 중심성 분석에서는 연결 중심성과 페이지랭크 중심성에 의한 평가가 적합한 것으로 나타났으며, '농업', '교육', '미래', '농업인', '디지털', '지원', '활용' 등이 중심성이 강한 단어로 나타났다.