• Title/Summary/Keyword: 역문서 빈도 가중치

Search Result 11, Processing Time 0.019 seconds

Automatic Text Categorization by Term Weighting and Inverted Category Frequency (용어 가중치와 역범주 빈도에 의한 자동문서 범주화)

  • Lee, Kyung-Chan;Kang, Seung-Shik
    • Annual Conference on Human and Language Technology
    • /
    • 2003.10d
    • /
    • pp.14-17
    • /
    • 2003
  • 문서의 확률을 이용하여 자동으로 문서를 분류하는 문서 범주화 기법의 대표적인 방법이 나이브 베이지언 확률 모델이다. 이 방법의 기본 형식은 출현 용어의 확률 계산 방법이다. 하지만 실제 문서 범주화 과정에서 출현하지 않는 용어들도 성능에 많은 영향을 줄 수 있으며, 출현 용어들에 대한 빈도 이외의 역범주 빈도나 용어가중치를 적용하여 문서 범주화 시스템의 성능을 향상시킬 수 있다. 본 논문에서는 나이브 베이지언 확률 모델에 출현 용어와 출현하지 않는 용어들에 대한 smoothing 기법을 적용하여 실험하였다. 성능 평가를 위해 뉴스그룹 문서들을 이용하였으며, 역범주 빈도와 가중치를 적용했을 때 나이브 베이지언 확률 모델에 비해 약 7% 정도 성능 개선 효과가 있었다.

  • PDF

Weighting Methods and their Evaluations for Compound Nouns in Korean Text Retrieval (한국어 정보검색에서의 복합명사 가중치 부여 방법 및 평가)

  • Kim, Ji-Young;Sung, Hyon-Myaeng
    • Annual Conference on Human and Language Technology
    • /
    • 2001.10d
    • /
    • pp.157-162
    • /
    • 2001
  • 한국어의 경우 띄어쓰기의 자유로움과 명사들이 비교적 자유롭게 결합하여 새로운 복합명사(compound noun)를 형성한다. 따라서, 정보검색에서 복합명사를 적절하게 처리하게 되면 검색 효율을 향상시킬 수 있다. 본 논문에서는 질의에 포함된 단일명사, 복합명사, 그리고 복합명사를 이루는 구성명사의 적절한 가중치 부여 방법에 대하여 기술한다. 일반적인 tf*idf가중치 방법은 문서 내 빈도수(tf)만을 강조하여 문서 내 발생빈도가 낮은 복합명사의 경우 낮은 가중치를 갖는다. 반대로, 역문헌 빈도수(idf)로 인해 복합명사가 단일명사보다 높은 가중치를 갖게 되면 단일명사의 가중치를 지나치게 떨어뜨려 검색 성능을 저하시킨다. 이런 문제를 해결하기 위해서 복합명사의 통계적인 특성을 고려하고, 복합명사를 이루는 구성명사의 적절한 가중치 사용과 tf*idf 변화 범위에 따른 파라메터를 이용하였다. 결과적으로 본 논문에서는 질의 색인어의 종류에 따라 가중치를 달리 부여함으로써 검색 성능을 향상시킬 수 있는 가중치 부여 방법을 제시하고 검증 실험을 통해 유효성을 제시했다는 점에서 그 의의가 있다고 하겠다.

  • PDF

Analysis of the National Police Agency business trends using text mining (텍스트 마이닝 기법을 이용한 경찰청 업무 트렌드 분석)

  • Sun, Hyunseok;Lim, Changwon
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.2
    • /
    • pp.301-317
    • /
    • 2019
  • There has been significant research conducted on how to discover various insights through text data using statistical techniques. In this study we analyzed text data produced by the Korean National Police Agency to identify trends in the work by year and compare work characteristics among local authorities by identifying distinctive keywords in documents produced by each local authority. A preprocessing according to the characteristics of each data was conducted and the frequency of words for each document was calculated in order to draw a meaningful conclusion. The simple term frequency shown in the document is difficult to describe the characteristics of the keywords; therefore, the frequency for each term was newly calculated using the term frequency-inverse document frequency weights. The L2 norm normalization technique was used to compare the frequency of words. The analysis can be used as basic data that can be newly for future police work improvement policies and as a method to improve the efficiency of the police service that also help identify a demand for improvements in indoor work.

An AutoEncoder Model based on Attention and Inverse Document Frequency for Classification of Creativity in Essay (에세이의 창의성 분류를 위한 어텐션과 역문서 빈도 기반의 자기부호화기 모델)

  • Se-Jin Jeong;Deok-gi Kim;Byung-Won On
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.624-629
    • /
    • 2022
  • 에세이의 창의성을 자동으로 분류하는 기존의 주요 연구는 말뭉치에서 빈번하게 등장하지 않는 단어에 초점을 맞추어 기계학습을 수행한다. 그러나 이러한 연구는 에세이의 주제와 상관없이 단순히 참신한 단어가 많아 창의적으로 분류되는 문제점이 발생한다. 본 논문에서는 어텐션(Attention)과 역문서 빈도(Inverse Document Frequency; IDF)를 이용하여 에세이 내용 전달에 있어 중요하면서 참신한 단어에 높은 가중치를 두는 문맥 벡터를 구하고, 자기부호화기(AutoEncoder) 모델을 사용하여 문맥 벡터들로부터 창의적인 에세이와 창의적이지 않은 에세이의 특징 벡터를 추출한다. 그리고 시험 단계에서 새로운 에세이의 특징 벡터와 비교하여 그 에세이가 창의적인지 아닌지 분류하는 딥러닝 모델을 제안한다. 실험 결과에 따르면 제안 방안은 기존 방안에 비해 높은 정확도를 보인다. 구체적으로 제안 방안의 평균 정확도는 92%였고 기존의 주요 방안보다 9%의 정확도 향상을 보였다.

  • PDF

An Automatic Classification System of Official Documents in Middle Schools Using Term Weighting of Titles (제목의 단어 가중치를 이용한 중등학교 공문서 자동분류시스템)

  • Kang, Hyun-Hee;Jin, Min
    • Journal of The Korean Association of Information Education
    • /
    • v.7 no.2
    • /
    • pp.219-226
    • /
    • 2003
  • It takes a lot of time to classify official documents in schools and educational institutions. In order to reduce the overhead, we propose an automatic document classification method using word information of the titles of documents in this paper. At first, meaningful words are extracted from titles of existing documents and Inverse Document Frequency(IDF) weights of words are calculated against each category. Then we build a word weight dictionary. Documents are automatically classified into the appropriate category of which the sum of weights of words of the title is the highest by using the word weight dictionary. We also evaluate the performance of the proposed method using a real dataset of a middle school.

  • PDF

Sentence Cohesion & Subject driving Keywords Extraction for Document Classification (문서 분류를 위한 문장 응집도와 주어 주도의 주제어 추출)

  • Ahn Heui-Kook;Roh Hi-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.463-465
    • /
    • 2005
  • 문서분류 시 문서의 내용을 표현하기 위한 자질로서 사용되는 단어의 출현빈도정보는 해당 문서의 주제어를 표현하기에 취약한 점을 갖고 있다. 즉, 키워드가 문장에서 어떠한 목적(의미)으로 사용되었는지에 대한 정보를 표현할 수가 없고, 문장 간의 응집도가 강한 문장에서 추출되었는지 아닌지에 대한 정보를 표현할 수가 없다. 따라서, 이 정보로부터 문서분류를 하는 것은 그 정확도에 있어서 한계를 갖게 된다. 본 논문에서는 이러한 문서표현의 문제를 해결하기위해, 키워드를 선택할 때, 자질로서 문장의 역할(주어)정보를 추출하여 가중치 부여방식을 통하여 주어주도정보량을 추출하였다. 또한, 자질로서 문장 내 키워드들의 동시출현빈도 정보를 추출하여 문장 간 키워드들의 연관성정도를 시소러스에 담아내었다. 그리고, 이로부터 응집도 정보를 추출하였다. 이 두 정보의 통합으로부터 문서 주제어를 결정함으로서, 문서분류를 위한 주제어 추출 시 불필요한 키워드의 삽입을 줄이고, 동시 출현하는 키워드들에 대한 선택 기준을 제공하고자 하였다. 실험을 통해 한번 출현한 키워드라도, 문장을 주도하는 주어로서 사용될 경우와 응집도 가중치가 높을 경우에 주제어로서의 선택될 가능성이 향상되고, 문서분류를 위해 좀 더 세분화된 키워드 점수화가 가능함을 확인하였다. 따라서, 선택된 주제어가 문서분류의 정확도에 있어서 향상을 가져올 수 있을 것으로 기대한다.

  • PDF

Study on the Establishment of Tollgate Improvement Measures through Categorization of Expressway Tollgate Accidents and Network Clustering (고속도로 톨게이트 교통사고 유형화 및 네트워크 클러스터링 기반 톨게이트 개선방안 수립 연구)

  • Inyoung Kim;Hansol Jeong;Sangmin Park;Kwangseob, Lee;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.5
    • /
    • pp.1-17
    • /
    • 2024
  • In Korea, tollgates are designed in a complex manner with the coexistence of Hi-Pass and Toll Collection System lanes, frequently leading to traffic accidents. Despite the continuous efforts of the government to improve tollgates based on an analysis of accident factors, incidents still persist. Tollgates require drivers to be aware of numerous circumstances and events within a short distance, necessitating careful consideration of several factors and circumstances when analyzing traffic accidents. Therefore, this study applied the Term Frequency-Inverse Document Frequency method to traffic accident data to identify the factors and circumstances. Subsequently, the tollgate traffic accidents were categorized. Finally, effective tollgate improvement measures were proposed based on the categorization result.

Research of Term-Weighting Method in an Usenet Information Retrieval System (유즈넷 정보검색시스템에서 단어 가중치 적용방법에 관한연구)

  • 최재덕;최진석;박민식
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10b
    • /
    • pp.339-341
    • /
    • 1998
  • 다양한 정보교환 수단의 하나인 유즈넷은 방대한 정보량을 가진다. 사용자는 유즈넷에서 필요한 정보를 쉽게 찾지 못하므로 뉴스그룹 전체와 본문에서 정보 검색의 필요성을 인식하고 있다. 이 논문에서는 정보검색시스템을 유즈넷으로 확장시 단어 가중치 적용방법의 개선을 통해 검색효율을 향상시키고자 한다. 정보검색에서 단어의 중요도에 영향을 미치는 tf, idf 이외의 다른 요소인 카테고리빈도(category frequency, cf)를 활용하여 tf*idf방법에 역카테고리빈도(inverted categoary frequency, icf)를 고려한 유사도 계산 방법을 제시하고 이를 검증하였다. 실험 결과에서 상위 30위 내의 평균 적합문서의 수가 tf*{{{{ SQRT {idf$^2$+icf$^2$} }}}}방법이 tf*idf 방법보다 4.6% 향상됨을 알 수 있다.

A Comparative Study on Requirements Analysis Techniques using Natural Language Processing and Machine Learning

  • Cho, Byung-Sun;Lee, Seok-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.7
    • /
    • pp.27-37
    • /
    • 2020
  • In this paper, we propose the methodology based on data-driven approach using Natural Language Processing and Machine Learning for classifying requirements into functional requirements and non-functional requirements. Through the analysis of the results of the requirements classification, we have learned that the trained models derived from requirements classification with data-preprocessing and classification algorithm based on the characteristics and information of existing requirements that used term weights based on TF and IDF outperformed the results that used stemming and stop words to classify the requirements into functional and non-functional requirements. This observation also shows that the term weight calculated without removal of the stemming and stop words influenced the results positively. Furthermore, we investigate an optimized method for the study of classifying software requirements into functional and non-functional requirements.

Korea National College of Agriculture and Fisheries in Naver News by Web Crolling : Based on Keyword Analysis and Semantic Network Analysis (웹 크롤링에 의한 네이버 뉴스에서의 한국농수산대학 - 키워드 분석과 의미연결망분석 -)

  • Joo, J.S.;Lee, S.Y.;Kim, S.H.;Park, N.B.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.23 no.2
    • /
    • pp.71-86
    • /
    • 2021
  • This study was conducted to find information on the university's image from words related to 'Korea National College of Agriculture and Fisheries (KNCAF)' in Naver News. For this purpose, word frequency analysis, TF-IDF evaluation and semantic network analysis were performed using web crawling technology. In word frequency analysis, 'agriculture', 'education', 'support', 'farmer', 'youth', 'university', 'business', 'rural', 'CEO' were important words. In the TF-IDF evaluation, the key words were 'farmer', 'dron', 'agricultural and livestock food department', 'Jeonbuk', 'young farmer', 'agriculture', 'Chonju', 'university', 'device', 'spreading'. In the semantic network analysis, the Bigrams showed high correlations in the order of 'youth' - 'farmer', 'digital' - 'agriculture', 'farming' - 'settlement', 'agriculture' - 'rural', 'digital' - 'turnover'. As a result of evaluating the importance of keywords as five central index, 'agriculture' ranked first. And the keywords in the second place of the centrality index were 'farmers' (Cc, Cb), 'education' (Cd, Cp) and 'future' (Ce). The sperman's rank correlation coefficient by centrality index showed the most similar rank between Degree centrality and Pagerank centrality. The KNCAF articles of Naver News were used as important words such as 'agriculture', 'education', 'support', 'farmer', 'youth' in terms of word frequency. However, in the evaluation including document frequency, the words such as 'farmer', 'dron', 'Ministry of Agriculture, Food and Rural Affairs', 'Jeonbuk', and 'young farmers' were found to be key words. The centrality analysis considering the network connectivity between words was suitable for evaluation by Cd and Cp. And the words with strong centrality were 'agriculture', 'education', 'future', 'farmer', 'digital', 'support', 'utilization'.