• Title/Summary/Keyword: 여행계획

Search Result 98, Processing Time 0.03 seconds

Study on Algorithm to Generate Trip Plans with Prior Experience Based on Users' Ratings (사용자 평점 기반의 사전 체험형 여행계획 자동생성 알고리즘)

  • Jung, Hyun Ki;Lim, Sang Min;Hong, Seong Mo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.12
    • /
    • pp.537-546
    • /
    • 2014
  • The purpose of this study is to develope an algorithm which generates trip plans based on rating points of travel app users and travel experts to help potential travellers experience their desired destinations in advance. This algorithm uses the above rating points and the gradually created hierarchy to generate the most preferred and efficient trip courses. Users can go through video clips or panoramic VR videos of the actual destinations from their trip plans generated by the algorithm which may add excitement to their actual trips. With our heuristic methods, the more users input their ratings, the better trip plans can be generated. This algorithm has been tested on android OS and proven efficient in generating trip plans. This research introduces a way to experience travel destinations with panoramic VR video and proposes the algorithm which generates trip plans based on users' ratings. It is expected to be useful for travellers' trip planning and to contribute growth in the travel market.

A Study on The Emotional Travel Planning App Using Data Mining (데이터 마이닝을 활용한 감성적 여행 계획 앱 연구)

  • Hyun-woo Seo;Am-Suk Oh
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.549-550
    • /
    • 2023
  • 본 논문에서는 데이터 마이닝을 활용한 감성적 여행계획 제공 앱으로 각 개인에게 알맞은 맞춤형 여행계획 추천 어플을 연구하고자 한다. 여행 계획에서 여행자들이 더 좋은 경험을 하도록 돕고 앱을 통하여 여행을 최대로 즐길 수 있으며 앱에서 제공하는 데이터들을 바탕으로 숙소, 관광명소, 음식점 등의 자료제공으로 최상, 최적의 숙소 체험, 훌륭한 음식점 예약, 주변의 좋은 여행지를 검색 가능하게 하고자 한다. 아울러, 어떤 여행을 계획하든 제공하는 앱으로 간편하게 감성적으로 여행을 계획하고 그 체험과 정보들을 다른 사람들에게도 여행 가이드로 추천, 공유할 수 있도록 하고자 한다.

  • PDF

Study on Algorithm to Generate Trip Plans Based on The User's Rating Using the Statistical Information and Photo Tag Information for The Personalization of Travel (여행의 개인화를 위한 사진태그정보 및 통계정보를 이용한 사용자 평점 기반의 여행계획 자동생성 알고리즘)

  • Jung, HyunKi;Lim, Sang min
    • Annual Conference of KIPS
    • /
    • 2015.04a
    • /
    • pp.901-904
    • /
    • 2015
  • 본 논문에서는 사진의 태그정보 및 통계정보, 사용자 평점을 이용하여 여행에 앞서 본인의 취향 등에 맞는 개인화 된 여행계획을 생성할 수 있도록 지원하는 연구를 진행하였다. 개인화 된 여행계획의 자동생성을 위하여, 나이, 성별, 직업, 소득, 학력에 따라 선호하는 여행의 태마를 통계자료를 통해 구분하였고, 사진의 태그정보를 이용하여 사용자가 가장 선호하는 테마를 분별하여 개인화 할 수 있도록 하였다. 이렇게 구분된 태마는 다양한 포털사이트에 등록된 사용자 평점 정보를 토대로 하여 여행계획을 생성하여 사용자에게 제공할 수 있도록 하였다.

Health Zone_4050 멋지게 - 건강하게 여행 다녀오기

  • Lee, Eun-Jeong
    • 건강소식
    • /
    • v.36 no.7
    • /
    • pp.20-22
    • /
    • 2012
  • 올여름, 큰 맘 먹고 계획한 해외여행. 그런데 오랜 비행시간, 좁은 비행기 안, 낯선 풍토 탓에 여행을 즐기기도 전에 몸과 마음이 지쳐버릴 수 있다. 낯선 여행지에서 몸과 마음을 재충전해야겠다고 맘먹었다면 가장 중요한 것이 건강이라는 점을 간과하지 말아야 한다.

  • PDF

Travel Planning Recommendation System based on the Semantic Web Services (시맨틱 웹 서비스 기반 여행 계획 추천 시스템)

  • Kim, Sung-Suk;Kim, Pan-Koo
    • Annual Conference of KIPS
    • /
    • 2005.11a
    • /
    • pp.461-464
    • /
    • 2005
  • 현재의 웹은 사용자가 목적에 맞게 정보를 클릭하면서 정보를 찾아내는 게 일반적이다. 하지만 시맨틱 웹 서비스는 임무를 부여받은 자동화된 프로그램이 사람을 대신해 웹상의 정보를 추출하고 이를 가공해 새로운 정보를 만들어낼 수 있다. 이렇듯 사람을 대신 자동적으로 처리해주는 프로그램을 에이전트(Agent)라고 한다. 시맨틱 웹 서비스 이용하여 여행(Travel) 에이전트에게 대략적으로 휴가일정과 개인적인 선호도만 알려주면 여행에 필요한 모든 예약을 손쉽게 할 수 있다. 따라서 본 논문에서는 현존하는 여행 계획 추천 시스템과는 달리 시멘틱 웹 서비스 기술을 이용하여 보다 더 효율적이며 개인화된 여행 계획 추천 시스템을 제안한다.

  • PDF

Analysis of Tour Information Services using Agent-based Simulation (시뮬레이션 모형을 통한 관광정보서비스 효과 분석)

  • Kim, Hyeon-Myeong;O, Jun-Seok
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.6 s.92
    • /
    • pp.103-117
    • /
    • 2006
  • This study develops an agent-based simulation model to evaluate tourist information systems under ubiquitous environment. In this study, individual tourist's activity chaining behavior is formulated as a utility maximization problem. The underlying assumption of the model is that tourists increase their activities within their time and budget constraints to maximize their utilities. The model seeks individual's optimal tour schedule by solving Prize-Collecting Multiple-Day Traveling Salesman Problem(PC MD TSP). The simulation-based evaluation framework allows investigating individual utility gains by their information type and the total expenditure at each tour attractions. The real-time tour activity scheduling system enables tourists to optimize their tour activities by minimizing their time loss and maximizing their opportunity to use high utility facilities.

A Study on Spatial Therapy through Spatial Psychology (공간 심리학을 통한 공간치유 연구)

  • Hae Rang Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.709-714
    • /
    • 2023
  • This study aims to propose a method of spatial therapy through spatial psychology in various ways of healing for emotional damage received by individuals. It is intended to prove the effectiveness and specify the method through instructional cases of spatial therapy for general university students. The method of spatial therapy was designed as a preliminary question(past)-space exploration (present)-travel plan(future). In the preliminary question, the students remembered the happy trip with their family and the pleasant memories with a person for the longest time. In the space exploration, the places the students visited were all different, but they were fully satisfied and happy about the place they had been to. The students fully remembered and expressed their feelings about the person they were with and the place. In their travel plans, students were fully prepared for the trip and looking forward to various therapy emotions they wanted to feel there. Most of the students said they wanted to find peace of mind through travel, feel peaceful feelings, and enjoy a beautiful world. Travel for spatial therapy or visiting certain places gives those who are tired and struggling enough therapy power.

Multi-day Trip Planning System with Collaborative Recommendation (협업적 추천 기반의 여행 계획 시스템)

  • Aprilia, Priska;Oh, Kyeong-Jin;Hong, Myung-Duk;Ga, Myeong-Hyeon;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.159-185
    • /
    • 2016
  • Planning a multi-day trip is a complex, yet time-consuming task. It usually starts with selecting a list of points of interest (POIs) worth visiting and then arranging them into an itinerary, taking into consideration various constraints and preferences. When choosing POIs to visit, one might ask friends to suggest them, search for information on the Web, or seek advice from travel agents; however, those options have their limitations. First, the knowledge of friends is limited to the places they have visited. Second, the tourism information on the internet may be vast, but at the same time, might cause one to invest a lot of time reading and filtering the information. Lastly, travel agents might be biased towards providers of certain travel products when suggesting itineraries. In recent years, many researchers have tried to deal with the huge amount of tourism information available on the internet. They explored the wisdom of the crowd through overwhelming images shared by people on social media sites. Furthermore, trip planning problems are usually formulated as 'Tourist Trip Design Problems', and are solved using various search algorithms with heuristics. Various recommendation systems with various techniques have been set up to cope with the overwhelming tourism information available on the internet. Prediction models of recommendation systems are typically built using a large dataset. However, sometimes such a dataset is not always available. For other models, especially those that require input from people, human computation has emerged as a powerful and inexpensive approach. This study proposes CYTRIP (Crowdsource Your TRIP), a multi-day trip itinerary planning system that draws on the collective intelligence of contributors in recommending POIs. In order to enable the crowd to collaboratively recommend POIs to users, CYTRIP provides a shared workspace. In the shared workspace, the crowd can recommend as many POIs to as many requesters as they can, and they can also vote on the POIs recommended by other people when they find them interesting. In CYTRIP, anyone can make a contribution by recommending POIs to requesters based on requesters' specified preferences. CYTRIP takes input on the recommended POIs to build a multi-day trip itinerary taking into account the user's preferences, the various time constraints, and the locations. The input then becomes a multi-day trip planning problem that is formulated in Planning Domain Definition Language 3 (PDDL3). A sequence of actions formulated in a domain file is used to achieve the goals in the planning problem, which are the recommended POIs to be visited. The multi-day trip planning problem is a highly constrained problem. Sometimes, it is not feasible to visit all the recommended POIs with the limited resources available, such as the time the user can spend. In order to cope with an unachievable goal that can result in no solution for the other goals, CYTRIP selects a set of feasible POIs prior to the planning process. The planning problem is created for the selected POIs and fed into the planner. The solution returned by the planner is then parsed into a multi-day trip itinerary and displayed to the user on a map. The proposed system is implemented as a web-based application built using PHP on a CodeIgniter Web Framework. In order to evaluate the proposed system, an online experiment was conducted. From the online experiment, results show that with the help of the contributors, CYTRIP can plan and generate a multi-day trip itinerary that is tailored to the users' preferences and bound by their constraints, such as location or time constraints. The contributors also find that CYTRIP is a useful tool for collecting POIs from the crowd and planning a multi-day trip.

Design and Implement of TIP in tour (TIP(Travel Interesting Plan in tour)의 설계 및 구현)

  • Wee, Chan-hyuk;Choi, Younggil;Cho, Wijae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.605-607
    • /
    • 2016
  • The trend is growing domestic and international travelers. Research before making plans to travel people, Leave the tour you do not know the way, there are people who can not find a better destination. In this paper, to solve this problem and provide a mobile-to efficiency in traveling through a smart-phone application. At the same time to improve the convenience and satisfaction, etc. Select the destination country and traveling through the guidance system and the destination in the shortest path from the current location of the user to select multiple destinations shorten the travel route and save time. Also implemented to provide a convenience to guide the position of the additional facilities.

  • PDF

Implementation of Personalized Domestic Travel Application (개인 맞춤형 국내 여행 어플리케이션 구현)

  • Cho, Won-Hee;Kang, Hyun-Goo;Kim, Sang-Beom;Lee, Jeong-Joon
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.677-679
    • /
    • 2020
  • 문화체육관광부와 한국관광공사가 트위터, 페이스북 등 소셜미디어 분석한 것에 따르면, 모바일 여행 서비스가 증가하고 있고 여행자들의 취향이 세분화되고 있는 것으로 나타났다. 이에 따라 개인 맞춤형 여행을 선호하고 숨은 관광지를 찾는 여행자들이 많아지고 있다. 또한, 국내 여행의 수요가 증가하는 상황에서 출시된 주요 어플리케이션을 살펴보면 변화하고 있는 트렌드에 부합하지 않는다. 따라서, 변화하는 트렌드에 맞춰 사용자가 자신에게 맞는 여행을 계획할 수 있도록 사용자 기반으로 한 추천 기능과 유사한 관광지 추천 기능을 추가한다. 세분화된 사용자의 취향에 근접하기 위해 관광지 개요를 기반으로 유사한 관광지 추천 기능을 구현하고 리뷰 감성 분석을 기반으로 사용자 기반 관광지 추천 기능을 구현한다. 뿐만 아니라, 증강현실 내비게이션 기능도 추가한다. 이를 통해 사용자들이 자신에게 맞는 국내 여행을 계획하는 데 도움을 주고 유명한 관광지보다는 숨은 여행지를 선호하는 사용자 그리고 밀집된 관광지에서 목적지를 찾는 것에 불편함이 있는 사용자들에게는 편리함을 제공해 줄 것으로 기대된다.