• Title/Summary/Keyword: 여원 MLCA

Search Result 13, Processing Time 0.023 seconds

Image Encryption using 90/150 NBCA structure (90/150 NBCA 구조를 이용한 영상 암호화)

  • Nam, Tae-Hee;Kim, Seok-Tae;Cho, Sung-Jin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.152-155
    • /
    • 2009
  • In this paper, we propose the image encryption method using complemented MLCA based on 90/150 NBCA(Null Boundary Cellular Automata). The encryption method is processed in the following order. First, complemented MLCA, which is derived from linear LFSR, is used to produce a PN(pseudo noise) sequence, which matches the size of the original image. Then, the created complemented MLCA sequence goes through a XOR operation with the original image to become encrypted. Lastly, an experiment is processed to verify the effectiveness of this method.

  • PDF

Image Encryption using Complemented MLCA based on IBCA and 2D CAT (IBCA에 기초한 여원 MLCA와 2D CAT를 이용한 영상 암호화)

  • Nam, Tae-Hee;Kim, Seok-Tae;Cho, Sung-Jin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.34-41
    • /
    • 2009
  • In this paper we propose a new image encryption method which utilizes Complemented MLCA(Complemented Maximum Length Cellular Automata) based on IBCA(Intermediate Boundary CA) and 2D CAT(Cellular Automata Transform). The encryption method is processed in the following order. First, Complemented MLCA is used to create a PN (pseudo noise) sequence, which matches the size of the original image. And, the original image goes through a XOR operation with the created sequence to convert the image into Complemented MLCA image. Then, the gateway value is set to produce a 2D CAT basis function. The produced basis function is multiplied by the encrypted MLCA image that has been converted to process the encipherment. Lastly, the stability analysis and PSNR(Peak Signal to Noise Ratio) verifies that the proposed method holds a high encryption quality status.

A Novel Image Encryption using Complemented MLCA based on NBCA and 2D CAT (NBCA 에 기초한 여원 MLCA와 2D CAT를 이용한 새로운 영상 암호화)

  • Kim, Ha-Kyung;Nam, Tae-Hee;Cho, Sung-Jin;Kim, Seok-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6C
    • /
    • pp.361-367
    • /
    • 2011
  • In this paper, we propose encryption method to using complemented MLCA(Maximum Length Cellular Automata) based on NBCA(Null Boundary CA) and 2D CAT (Two-Dimensional Cellular Automata Transform) for efficient image encryption. The encryption method is processed in the following order. First, a transition matrix T is created using the Wolfram Rule matrix. Then, the transition matrix T is multiplied to the original image that is intended to be encrypted, which transfers the pixel values of the original image. Furthermore, the converted original image goes through a XOR operation with complemented vector F to convert into a complemented MLCA applied image. Then, the gateway value is set and 2D CAT basis function is created. Also, the 2D CAT is encrypted by multiplying the created basis function to the complemented MLCA applied image. Lastly, the stability analysis verifies that proposed method holds a high encryption quality status.

Analysis of Pseudorandom Sequences Generated by Maximum Length Complemented Cellular Automata (최대길이 여원 CA 기반의 의사랜덤수열 분석)

  • Choi, Un-Sook;Cho, Sung-Jin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.1001-1008
    • /
    • 2019
  • A high-quality pseudorandom sequence generation is an important part of many cryptographic applications, including encryption protocols. Therefore, a pseudorandom number generator (PRNG) is an essential element for generating key sequences in a cryptosystem. A PRNG must effectively generate a large, high-quality random data stream. It is well known that the bitstreams output by the CA-based PRNG are more random than the bitstreams output by the LFSR-based PRNG. In this paper, we prove that the complemented CA derived from 90/150 maximum length cellular automata(MLCA) is a MLCA to design a PRNG that can generate more secure bitstreams and extend the key space in a secret key cryptosystem. Also we give a method for calculating the cell positions outputting a nonlinear sequence with maximum period in complemented MLCA derived from a 90/150 MLCA and a complement vector.

Complemented Maximum-Length Cellular Automata Applied on Video Encryption (비디오 암호화를 위한 여원 최대길이 셀룰라 오토마타)

  • Li, Gao-Yong;Cho, Sung-Jin;Kim, Seok-Tae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.1
    • /
    • pp.13-18
    • /
    • 2017
  • With the advancement of internet technology, the importance of data protection is gaining more attention. As a possible data protection solution, we propose a novel video encryption method using complemented maximum-length cellular automata (C-MLCA). The first step for encryption is to use 90/150 CA rule to generate a transition matrix T of a C-MLCA state followed by a 2D C-MLCA basis image. Then, we divide the video into multiple frames. Once, we perform exclusive-OR operation with the split frames and the 2D basis image, the final encrypted video can be obtained. By altering values of pixel, the fundamental information in visualizing image data, the proposed method provides improved security. Moreover, we carry out some computational experiments to further evaluate our method where the results confirm its feasibility.

Generation of Maximum Length Cellular Automata (최대길이를 갖는 셀룰라 오토마타의 생성)

  • Choi Un-Sook;Cho Sung-Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.6
    • /
    • pp.25-30
    • /
    • 2004
  • Linear cellular automata(CA) which generate maximum-length cycles, have wide applications in generation of pseudo-random patterns, signature analysis, cryptography and error correcting codes etc. Linear CA whose characteristic polynomial is primitive has been studied. In this paper Ive propose a effective method for generation of a variety of maximum-length CA(MLCA). And we show that the complemented CA's derived from a linear MLCA are all MLCA. Also we analyze the Properties of complemented MLCA. And we prove that the number of n-cell MLCA is ${\phi}(2^{n}-1)2^{n+1}$/n.

Image Encryption Scheme using Complemented MLCA and Special Chaos Map (여원 MLCA와 특수 혼돈 함수를 이용한 영상 암호화 기법)

  • Jeong, Hyun-Soo;Park, Kyu-Chil;Cho, Sung-Jin;Kim, Seok-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.5
    • /
    • pp.873-880
    • /
    • 2020
  • The proposed encryption algorithm strengthens its security by converting pixel-specific values and changing pixel positions. The state transition matrix created by Wolfram's rule creates a complemented CA sequence with the maximum length. Then, we convert the sequence into a 2D basis image and go through a XOR operation with the original image. The final encrypted image is created by shear stressing and rearranging. The image stability analysis verified that the proposed encryption method has high security.

Generation of Additive Maximum Length Cellular Automata (최대길이를 갖는 가산 셀룰라 오토마타의 생성)

  • Cho, Sung-Jin;Choi, Un-Sook
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.1071-1074
    • /
    • 2004
  • 최대길이를 갖는 선형유한상태기계(LFSM)가 패턴생성, 신호분석, 암호, 오류정정 부호에 응용되면서 n차 원시다항식을 특성다항식으로 갖는 선형유한상태기계에 관한 연구가 활발하게 이루어지고 있다. 본 논문은 최대길이를 갖는 다양한 셀룰라 오토마타의 효과적인 생성방법을 제안한다. 특성다항식이 n 차 원시다항식인 선형 MLCA로부터 유도된 여원 CA가 MLCA임을 밝히며 여원 MLCA의 여러 가지 성질들을 분석한다. 또한 n-셀 MLCA를 ${\phi}(2^n-1)2^{n+1}/n$개 생성할 수 있음을 보인다.

  • PDF

Medical Image Encryption based on C-MLCA and 1D CAT (C-MLCA와 1차원 CAT를 이용한 의료 영상 암호화)

  • Jeong, Hyun-Soo;Cho, Sung-Jin;Kim, Seok-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.2
    • /
    • pp.439-446
    • /
    • 2019
  • In this paper, we propose a encryption method using C-MLCA and 1D CAT to secure medical image for efficiently. First, we generate a state transition matrix using a Wolfram rule and create a sequence of maximum length. By operating the complemented vector, it converts an existing sequence to a more complex sequence. Then, we multiply the two sequences by rows and columns to generate C-MLCA basis images of the original image size and go through a XOR operation. Finally, we will get the encrypted image to operate the 1D CAT basis function created by setting the gateway values and the image which is calculated by transform coefficients. By comparing the encrypted image with the original image, we evaluate to analyze the histogram and PSNR. Also, by analyzing NPCR and key space, we confirmed that the proposed encryption method has a high level of stability and security.

Medical Image Encryption using Non-linear MLCA and 1D CAT (비선형 MLCA와 1D CAT를 이용한 의료영상 암호화)

  • Nam, Tae-Hee
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2012.05a
    • /
    • pp.336-339
    • /
    • 2012
  • 본 논문에서는 비선형 MLCA(Maximum Length Cellular Automata)와 1D CAT(One-Dimensional Cellular Automata Transform)를 이용하여 의료 영상 암호화 방법을 제안한다. 암호화 방법은 먼저, Wolfram Rule 행렬에 의해 전이행렬 T를 생성한다. 그 후, 암호화하려는 원 영상에 생성된 전이 행렬 T를 곱하여 원 영상의 픽셀 값을 변환한다. 또한 변환된 원 영상을 여원 벡터 F와 XOR 연산하여 비선형 MLCA가 적용된 영상으로 변환한다. 다음, 게이트웨이 값을 설정하여 1D CAT 기저함수를 생성한다. 그리고, 비선형 MLCA가 적용된 영상에 생성된 1D CAT 기저함수를 곱하여 암호화를 한다. 마지막으로 키 공간 분석을 통하여 제안한 방법이 높은 암호화 수준의 성질을 가졌음을 검증한다.

  • PDF