• Title/Summary/Keyword: 엔진 연료소모량

Search Result 46, Processing Time 0.025 seconds

Emission Prediction from Naval Ship Main Propulsive Diesel Engine under Steady Navigation (정속항해 시 함정 주 추진 디젤엔진의 배기가스 배출량 예측)

  • Lee, Hyung-Min;Park, Rang-Eun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.788-793
    • /
    • 2012
  • This study was focused on the estimations of air pollutants, such as PM(Particulate matters), SOx(Sulfur Oxides), $CO_2$(Carbon diOxides) and NOx(Nitrogen Oxides), from a diesel propulsion engine installed on a naval vessel. Legislative and regulatory actions for exhaust emissions from ships are being strengthened in international communities and national governments to protect human health and the environment. In this context, various technologies have been developed from all of the nations of the world to meet strict standards. These regulations are based on commercial ship applications and according to size, but are not suitable for military naval vessels, which have much different engine operating conditions and hull architectures. Additionally, there is no international emission control system for military ships. Emission factors have been updated for commercial ship types from work at various research institutes; however, it is difficult to develop emission factors for military vessels because of their characteristics. In this paper, exhaust emissions from diesel engines installed on naval vessels under steady navigation condition were estimated with emission inventory methodology applied to ocean going vessels using fuel-based methods and fuel sulfur content analysis.

Study on Power Distribution Algorithm in terms of Fuel Equivalent (등가 연료 관점에서의 동력 분배 알고리즘에 대한 연구)

  • Kim, Gyoungeun;Kim, Byeongwoo
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.5 no.6
    • /
    • pp.583-591
    • /
    • 2015
  • In order to evaluate the performance of TAS applied to the hybrid vehicle of the soft belt driven, acceleration performance and fuel consumption performance is to be superior to the existing vehicle. The key components of belt driven TAS(Torque Assist System), such as the engine, the motor and the battery, The key components of the driven belt TAS, such as the engine, the motor, and the battery, have a significant impact on fuel consumption performance of the vehicle. Therefore, in order to improve the efficiency at the point of view based on the overall system, the study of the power distribution algorithm for controlling the main source powers is necessary. In this paper, we propose the power distribution algorithm, applied the homogeneous analysis method in terms of fuel equivalent, for minimizing the fuel consumption. We have confirmed that the proposed algorithm is contribute to improving the fuel consumption performance satisfied the constraints considering the vehicle status information and the required power through the control parameters to minimize the fuel consumption of the engine. The optimization process of the proposed driving strategy can reduce the trial and error in the research and development process and monitor the characteristics of the control parameter quickly and accurately. Therefore, it can be utilized as a way to derive the operational strategy to minimize the fuel consumption.

Demonstration of DC Electric Propulsion System for 10-ton Class Fishing Boat (10톤급 어선에의 DC 배전 전기 추진 선박 실증)

  • Son, Young-Kwang;Lee, Seong-Yong;Sul, Seung-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.110-111
    • /
    • 2019
  • 본 논문은 DC 배전 전기 추진 시스템으로 건조된 10톤급 소형 어선을 운항하며 계측한 실험 결과를 제시한다. DC 배전 선박과 모의된 AC 배전 선박을 일반적인 10톤급 소형 어선의 운용 패턴에 따라 운항하였고, 각 경우의 연료소모량을 유량계로 측정하였다. DC 배전 시스템은 가변속으로 인한 엔진의 효율적인 운전과 전기설비 무게 감소로 인한 추진 부하 감소의 효과로 AC 배전 시스템에 비하여 연료사용량이 약 20% 가량 절감된다. 실험 결과, DC 배전 전기 추진 선박을 적용할 시 연간 약 18,500L (22.0%)의 연료가 절감되어 연료비가 매년 약 1400만원 가량 절약될 것으로 예상된다.

  • PDF

Performance Analysis of the Propulsion System for the Combined Rotorcraft (복합형 로터항공기의 동력장치 성능해석 연구)

  • Jo, Hana;Choi, Seongman;Park, Kyungsu;Yang, Gyaebyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.6
    • /
    • pp.83-90
    • /
    • 2017
  • Performance analysis of the turboshaft engines for combined rotorcraft was executed. A tip jet and a ducted fan aircraft were selected for combined rotorcraft application. Gasturb 12 software was used for turboshaft engine performance analysis. In the results, maximum required power for the tip jet engine is about 1,600 hp class and maximum required power for the ducted fan engine is about 1,000 hp class at the required aircraft mission. This is due to the additional power of the auxiliary compressor to get a bleed air mass flow rate for the tip jet operation. At the same time, fuel consumption of the tip jet aircraft is 2.8 times larger than ducted fan case. Therefore ducted fan type aircraft is more efficient than tip jet aircraft in terms of fuel economy.

Basic Experiment of P8250 Educational Engine Performance (P8250 학습용 엔진성능의 기초 실험)

  • Lim, Chang-Su;Choi, Jun-Seop;Wang, So-Rang
    • 대한공업교육학회지
    • /
    • v.33 no.2
    • /
    • pp.218-231
    • /
    • 2008
  • The purpose of this study was made for the pre-teacher of university to enhance understanding for the concept of engine performance and to provide information regarding engine performance in the institute of teacher educator. This study was carried out through engine performance experiment with The Cussons Engine Test Bed P8250, internal combustion engine, in order to analyze data quantitatively, and apply and verify factors of controlling engine performance. The main results of this study are as follows: First, power and brake horsepower increased linearly, and torque over the mid-speed as engine rps(revolution per second) decreased. Second, the change of torque and specific fuel consumption were able to be verified and the concept of engine performance was able to be understood. Third, the experimental values of brake horsepower and torque on engine performance showed the same tendency as theoretical values. Fourth, air/fuel ratio increased proportionally as engine speed increased.

가스터빈 엔진 천이 성능 시험에 의한 정상상태 성능 예측

  • Yang, In-Young;Jun, Yong-Min;Kim, Chun-Taek;Yang, Soo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • Methodology of predicting steady performance of gas turbine engine from transient test data was explored to develop an economic performance test technique. Discrepancy of transient performance from steady performance was categorized as dynamic, thermal and aerodynamic transient effects. Each effect was mathematically modeled and quantified to provide correction factors for calculating steady performance. The influence of engine inlet/outlet condition change on engine performance was corrected firstly, and then steady performance was predicted from the correction factors. The result was compared with steady performance test data. This correction method showed an acceptable level of precision, 3.68% difference of fuel flow.

  • PDF

A Study on the Development of a Variable Speed Diesel Generator for DC Distribution (직류배전용 가변속 디젤발전기 개발에 관한 연구)

  • Park, Kido;Kim, Jongsu
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.1
    • /
    • pp.117-121
    • /
    • 2019
  • In this study, research and a demonstration for applying DC distribution systems to ships as an environmental and energy conservation solution in domestic and foreign countries were actively carried out. In order to apply a generator to a DC distribution system, a variable speed engine was used. Both engine speed and fuel consumption were reduced. In this paper, a DC generator for DC distribution was constructed using a diesel generator, a generator controller, a governor, and an AVR. A system configuration method for a generator, power quality test, and the power characteristics of a variable speed generator were analyzed. The voltage (250 - 440 VAC) and frequency (34 - 60 Hz) of the variable speed generator were set to 60 - 100 % of the rated value, and the engine was set to operate from 1100 - 1800 rpm. It was confirmed that the voltage, current, and frequency of the generator output fluctuated in a stable manner according to the power amount when changing the engine speed of the generator according to the load variation.

Experimental Study on Reduction of Emissions for Marine Diesel Engines with a Double Post Injection (선박용 디젤엔진에서 이단지연분사에 따른 배기 배출물 저감에 관한 실험 연구)

  • Lee, Won-Ju;Choi, Jae-Hyuk;Cho, Kwon-Hae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.418-424
    • /
    • 2015
  • Marine Environment Protection Committee of the International Maritime Organization has decided to reinforce the NOx emission standards for ships passing an ECA(Emission Control Area) with Tier III standards from January 1, 2016. In this study, real-time measurements of the exhaust gas, cylinder pressure and fuel consumption were conducted at each load of a T/S Hanbada main engine of Korea Maritime and Ocean University, which is controlled by single injection and double post injection for reducing NOx emissions. The results showed that the quantity of CO2 and NOx increased in proportion to the engine load, whereas the CO concentration was inversely proportional to the engine load. In addition, double post injection decreased 10 % of P-max and reduced 25~30 % of the NOx emissions compared to single injection, whereas there was a trade-off relation, such as increase 3~5 % of SFOC (Specific Fuel Oil Consumption).

Effect on the Fuel Economy by Gradient in Automobile Driveway (자동차 전용도로에서 경사가 연비에 미치는 영향)

  • Choi, Seong-Cheol;Oh, Tae-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.2925-2930
    • /
    • 2011
  • A vehicle fuel economy is very important issue in the view of fuel cost and environmental regulation. The fuel economy is much improved according to the development of electric, electronic and mechanical technology, but up to now the measurement of it tests the given mode(LA-4, FTP-75, etc) within computer simulation program and engine dynamometer. This fuel economy is different with it of real road. The one of main reason is not considered the gradient of the road. To estimate the effects of fuel economy at highway with gradient in this paper, we measure the amount of fuel consumption and calculate the fuel economy of it with running the Youngdong highway with high gradient. Also this paper analysis and compares the fuel economy with gradient and without gradient when the vehicle runs the same driveway. Then we calculate the total energy created the difference of fuel consumption amount of the two cases and calculate the consumpted energy by tire driving force from the torque and power of engine in the simulation. This paper verifies the relation of the driving force and the total energy by creating the difference of fuel consumption amount. This paper also proposes the method of fuel economy improvement despite of gradient at the result.

Characteristics of Electronically Controlled 13L LNG-Diesel Dual Fuel Engine (13L급 LNG-디젤 혼소엔진의 기초 성능 특성 연구)

  • Lee, Seok-Hwan;Lee, Jin-Wook;Heo, Seong-Joon;Yoon, Sung-Shik;Roh, Yun-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.4
    • /
    • pp.54-58
    • /
    • 2007
  • The trailers with electronically controlled diesel engine was converted to dual fuel engine system. To estimate economical efficiency, test vehicles have been operated on a certain driving route repeatedly. Fuel economy, mximum driving distance per refueling and driveability are examined on the road including a free way. Developed vehicle can be operated over 500 km with dual Hel and shows 85% of diesel substitution ratio. Driveability is similar with but passing acceleration. It will be improved by calibration process. Test engine was set up for investigating power output, thermal efficiency and emission. ND 13-mode tests were performed for the test cycle. The emission result of dual fuel meets K2006 regulation and the engine performance of dual fuel engine was equivalent to the performance of diesel engine.

  • PDF