• Title/Summary/Keyword: 엔진 고공 시험

Search Result 38, Processing Time 0.022 seconds

Altitude Engine Test (고공 환경 엔진 시험)

  • Lee Jin-Kun;Kim Chun-Taek;Yang Soo-Seok;Lee Dae-Sung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.104-111
    • /
    • 2005
  • Gas turbine engines for aircraft are usually operated at the altitude condition which is quite different from the ground condition. In order to measure the precise performance data at the altitude condition, the engine should be tested at the altitude condition by a real flight test or an altitude simulation test with an altitude test facility. In this paper, the present state of the altitude test facility and the test technologies at urn(Korea Aerospace Research Institute) will be introduced.

Development of Thrust Measurement System for Small Turbojet Engine Altitude Test (초소형 터보제트엔진의 고공환경시험용 추력측정시스템 개발)

  • Lee, Kyung-Jae;Kang, Sang-Hun;Lee, Bo-Hwa;Song, Jae-Kang;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.379-380
    • /
    • 2009
  • 한국항공우주연구원 추진기관팀은 1999년 10월에 3,000 lbf 급 고공환경 엔진시험 설비를 갖추고 소형 가스터빈 엔진의 고공환경 성능시험에 이를 활용하고 있다. 하지만 새롭게 2008년부터 고공환경 성능시험을 진행하고 있는 엔진은 1,000 lbf 미만의 초소형 엔진으로써 기존 추력측정 시스템을 이용하여서는 정확한 추력의 측정을 보장할 수 없다. 본 논문에서는 초소형 엔진의 고공환경 성능시험 수행을 위한 추력대의 구축 과정을 다루고 있다.

  • PDF

Study on Liquid Rocket Engine High Altitude Simulation Test (액체로켓엔진 고공환경 모사시험 연구)

  • Kim, Seung-Han;Moon, Yoon-Wan;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.733-736
    • /
    • 2010
  • Korea Aerospace Research Institute (KARI) performed the preliminary design of liquid rocket engine high-altitude simulation firing test facility for the development and qualification of LRE for the 2nd stage of KSLV-II. The engine high-altitude simulation firing test facility, which are to be constructed at Goheung Space Center, will provide liquid oxygen and kerosene to enable the high-altitude simulation firing test of 2nd stage engine at ground test facility. The high-altitude environment is obtained using a supersonic diffuser operated by the self-ejecting jet from the liquid rocket engine.

  • PDF

Conceptual Design of High Altitude Test Facility for Testing Liquid Rocket Engine (액체로켓엔진 고공모사시험설비의 개념설계)

  • Kim, Cheul-Woong;Nam, Chang-Ho;Kim, Seung-Han;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.383-387
    • /
    • 2008
  • To design a high altitude test facility for testing liquid rocket engine optimal technical solutions with general understanding about characteristics of engines and test stands, mission of a rocket and the financial aspects of tests are required. In this paper conditions and requirements needed at the stage of conceptual design of high altitude engine test facility were suggested, and preliminary calculations of the sizes of a supersonic diffuser and volume of cooling water were carried out.

  • PDF

High Altitude Test Facility for Small Scale Liquid Rocket Engine (소형 액체로켓엔진 고공환경 모사시험 설비)

  • Kim, Taewoan;Kim, Wanchan;Kim, Sunjin;Han, Yeoungmin;Ko, Youngsung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.73-82
    • /
    • 2015
  • A high altitude test facility which includes supersonic diffuser and ejector has been developed to simulate atmospheric pressure at 25 km using a 500 N class small scale liquid rocket engine. Also high altitude simulation test for the small scale liquid rocket engine was performed to verify the facility's performance. The experimental facility consists of high altitude simulation device, propellants supply system and coolant supply system. Low pressure condition corresponding to about 27 km(0.021 bar) altitude atmosphere was successfully simulated and a small scale liquid rocket engine thrust level was confirmed at the simulated condition by the high altitude test facility verification test.

Measurement Uncertainty Assessment of Altitude Performance Test for a Turboshaft Engine (터보샤프트 엔진 고공성능시험의 측정 불확도 평가)

  • Yang, In-Young;Lee, Bo-Hwa
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.4
    • /
    • pp.59-64
    • /
    • 2010
  • Measurement uncertainty assessment was performed for altitude performance test for a turboshaft engine. Mathematical models of measurement were suggested for major performance parameters such as shaft horse power, fuel flow, specific fuel consumption, and airflow. The procedure was compared with the test of turbojet or turbofan engines. Uncertainty involved with the test condition measurement was assessed. Influence of the test condition measurement uncertainty on the corrected performance data was discussed. Uncertainty assessment result was provided for a example test case using a real altitude test facility. For major performance parameters, measurement uncertainties were assessed as 0.65~1.09% including the test condition measurement uncertainty, 0.36~0.94% not including it.

The Air Flow Measurement and Prediction of Pressure Loss at Engine Inlet Duct (엔진 입구 덕트에서 공기유량 측정 및 압력손실 예측방법)

  • Lee, Bo-Hwa;Yang, In-Young;Yang, Soo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.29-34
    • /
    • 2007
  • The purpose of this paper was to address the methodology of the air flow measurement using duct mach number that was considered area-weighed average obtained by total pressure and temperature measured at engine inlet duct. Without installing boundary rake, the prediction of air flow measurement was discussed. Actual air flow measurement and pressure value using pressure loss through inlet seal were described to improve the reliability and operability of altitude engine test facility.

  • PDF

The introduction of Engine Performance Test for Miniature Turbojet Engine considering humidity effects (습도 영향을 고려한 초소형 터보제트 엔진 성능시험 소개)

  • Lee, Bo-Hwa;Lee, Kyung-Jae;Yang, Soo-Seok;Kim, Yu-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.335-338
    • /
    • 2010
  • The moisture in the atmosphere exerts a lot of influence upon Gas turbine engine performances. There is a noticeable influence of wet air at the summer sea level, high flight mach number and low engine rpm increasingly. An altitude Engine Test Facility is used to accomplish the engine performance tests at dry air condition and wet air condition, through which engine performance results is revealed. In the result, net thrust and specific fuel consumption measured -2.826% and 1.325%, respectively at wet air condition compared to dry air condition.

  • PDF

An Analysis on Plume Behaviour of Rocket Engine with Ground Condition at High Altitude Engine Test Facility (고공시험설비에서 로켓엔진의 지상시험 플룸 거동 해석)

  • Kim, Seong-Lyong;Lee, SeungJae;Han, YoungMin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.112-115
    • /
    • 2017
  • We analyzed the rocket engine flow to check whether the possibility of the ground test and the equipment safety problems in the high altitude engine test facility. The test condition is that the vacuum chamber is open and the coolant water is injected into the supersonic diffuser. The analysis uses two-dimensional axisymmetry with a mixture of plume, air, and cooling water. As a result, the ground test was possible up to the cooling water flow rate of 200 kg/sec. However, due to the back flow of the initial plume, the vacuum chamber is exposed to high temperature, and at the same time, the inside of the vacuum chamber is contaminated due to the reverse flow of the cooling water. Therefore, sufficient insulation measures and work for pollution avoidance should be preceded.

  • PDF

The Prediction of Air Flow and Pressure Loss at Inlet Duct (입구덕트 공기유량 및 압력손실 예측방법)

  • Lee, Bo-Hwa;Lee, Kyung-Jae;Yang, Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.1
    • /
    • pp.48-55
    • /
    • 2010
  • The purpose of this paper was to address the methodology of the air flow measurement using duct mach number that was considered area-weighed average obtained by total, static pressure and temperature measured at engine inlet duct. Without installing boundary rake, the prediction of air flow measurement was discussed. Actual air flow measurement and pressure value using pressure loss through inlet seal were described to improve the reliability and operability of altitude engine test facility.