• Title/Summary/Keyword: 엔진흡기

Search Result 193, Processing Time 0.021 seconds

스마트 무인기 흡기구 설계 및 성능해석

  • Jung, Yong-Wun;Jun, Yong-Min;Yang, Soo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.197-207
    • /
    • 2004
  • The developing Smart UAV in KARI supposes high speed flight as like a conventional plane, as well as vertical takeoff and landing as like a helicopter. Therefore, the air intake system should be designed to provide the sufficient air flow to the engine and the maximum possible total pressure recovery at the engine intake screen over a wide range of flight conditions. For this purpose, we designed the intake system using a pitor type intake model and plenum chamber. In this paper, we designed the intake model and analyzed the performance of designed intake system using the general-purpose commercial CFD code, CFD-ACE+. The analysis results of the total pressure variation and the velocity distribution were illustrated in this paper. The pressure recovery and distortion coefficient at a plane coincident with the compressor inlet were calculated and streamline variation through the intake system was investigated at the worst flight condition as well as the standard flight condition.

  • PDF

A study on power improvement emission characteristics of marine diesel engine with response power 200HP turbocharger (대응출력 200마력 과급기에 의한 디젤기관의 출력향상 및 배출특성에 관한 연구)

  • Lee, Chi-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.23-30
    • /
    • 2014
  • To improve efficiency of diesel engine which requests high output recently and is used all kinds of industrial areas, this thesis experimented dynamic characteristics and exhaust gas characteristics of diesel engine installed by supercharger of correspondent output 200HP and natural inhalation diesel engine through the dynamometer and exhaust gas analyzer in same condition. As the result of experiment with natural inhalation diesel engine and diesel engine installed by supercharger, there were a few differences of output, but dynamic characteristics at high speed showed increased output and efficiency of the engine installed by supercharger. On the contrary, in exhaust gas characteristics, the model installed by supercharger showed increased exhaust gas such as $NO_X$, $O_2$, etc, but added value of exhaust gas is low if considering $CO_2$ reduction and efficiency of dynamic characteristic's increase. Based on the results, diesel engine installed by supercharger is expected to show higher economic feasibility than natural inhalation diesel than natural inhalation engine from an angle of efficiency. Keywords: 200hp class Turbocharger, Exhaust Gas, Engine Performance, Marine Diesel Engine.

A study on power improvement emission characteristics of marine diesel engine with response power 220HP turbocharger (대응출력 220마력 선박용 과급기에 의한 디젤기관의 출력향상 및 배출특성에 관한 연구)

  • Lee, Chi-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.911-917
    • /
    • 2013
  • This is a thesis about the experiment of comparison characteristic of power and exhaust gas in the same condition between diesel engine that is equipped response power 220HP turbocharger to increase effectiveness of the engine which is recently used in a lot of industry which requires high power. Resulting of the experiment with natural aspiration diesel engine and turbocharger diesel engine, difference in low speed is not significant, but in high speed, effectiveness of turbocharger diesel engine is much higher than the other one. In other hand, in exhaust gas experiment, turbocharger model exhausts more $NO_X$ and $O_2$, but it doesn't significantly affect the result when it comes with decreasing of $CO_2$ and effectiveness of increased power characteristic. As a result, the turbocharger diesel engine is economically effective comparing with the natural aspiration diesel engine.

Flow Simulation of a Small Engine Carburettor (소형엔진 기화기의 유동해석)

  • Bae, Bong-Ki;Park, Sung-Young
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.511-514
    • /
    • 2009
  • 현재 일반적으로 사용되는 300cc 소형엔진 기화기의 최적화 및 성능 향상을 위하여 유동해석을 수행하였다. 베르누이의 정리를 기본으로, 성능을 발휘하는 주요 설계인자인 기화기 내부의 벤튜리 튜브의 각도, 길이 등을 변수로 하여 유동해석을 수행하였다. 그 결과를 분석하여 최적화된 모델을 제시하였다. 결론적으로, 유동 해석을 바탕으로 기존 사양 대비 향상된 성능의 모델을 제시하였다. 유동해석을 통해 기화기 내부의 벤튜리관에 곡면(Rounding)처리를 적용함으로 기화기에서 소모되는 흡기저항을 줄여 펌핑로스를 저감활수 있음을 확인하였다. 펌핑로스의 저감은 엔진 연비의 향상과 엔진토크에 긍정적 효과로 작용할 것으로 기대된다. 벤튜리관의 출구 각도를 감소시킴으로 박리를 개선하여 Dead Volume을 줄임으로서 기존 모델에 대비하여 원활해진 유동의 흐름을 얻을 수 있었다. 이는 흡기유량을 증대시키고 엔진출력을 상승시키는 효과로 작용할 것으로 예상된다.

  • PDF

The Study of Propulsion Performance Model for Reciprocating Engine Aircraft (소형 왕복엔진 항공기용 추진성능모델 연구)

  • Choi, Won;Kim, Kwang-Hae;Kim, Ji-Hong;Lee, Won-Joong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.578-585
    • /
    • 2012
  • Reciprocating engine is widely used for small propeller driven aircraft. because it is the superior efficiency and low price. Currently, reciprocating engine is used for the development of KC-100, LSA, PAV, UAV in domestic. In this study, Naturally aspirated engine and turbocharger engine performance model is developed. The propeller is designed and analyzed at cruise condition of reciprocating engine aircraft using optimum method, the propeller performance model is developed. The Integrated propulsion performance model is developed, through the matching with engine and propeller performance model, for small reciprocating engine aircraft performance analysis.

  • PDF

Development of titanium alloy engine parts (티타늄합금 엔진부품개발)

  • 김상호;인치범;조원석
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.17-22
    • /
    • 1996
  • 티타늄합금을 사용하여 흡기밸브, 배기밸브, 밸브스프링 리테이너를 시제작하였다. FEM 구조해석결과와 모터링 내구실험결과를 통해 이들 부품들이 신뢰성을 가지는 것으로 판명되었다. 엔진성능실험을 통해서 고속영역에서 엔진출력 및 토오크가 3-4% 향상되었다. 단 향후 엔진내구실험을 통하여 충분한 내구성검증이 필요하다고 판단된다.

  • PDF

Analysis on Volumetric Efficiency and Torque Characteristics Using Inlet Port Pressure in SI Engines (흡기포트압력을 이용한 SI엔진의 체적효율 및 토크 성능 분석)

  • 이영주;홍성준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1408-1418
    • /
    • 1992
  • The valve timing and intake system in SI engine is chosen in order to get the maximum performance at the target rpm. This is a compromise and the performance reduction is expected in a certain rpm range. Therefore, to accomplish the possible engine capacity all over the operation ranges, it is required to investigate the effects of intake system and valve timing on engines more thoroughly. In this paper, it was attempted to examine closely the combined effects on the torque and the volumetric efficiency due to the change of valve timing and intake system dimensions. For this, the inlet port pressure was chosen as a primary parameter to represent engine performance characteristics together with surge tank pressure and induction pressure as secondaries. The inlet port pressure was analyzed in connection with both the secondaries and the performance data. Especially the relation between the inlet port pressure and the torque and volumetric efficiency was investigated on the operating conditions. In this experiment, it was acquired that the performances at specific rpm range could be improved by the combinations of valve timing and intake system. Then it was verified that pressure at a intake system contained useful data for the engine performance. By the analysis of inlet port pressure with the others, it was obtained that the properties of the torque and the volumetric efficiency due to the change of valve timing and intake conditions were able to be defined by the average and the maximum inlet port pressures, the pressure near before the intake valve closing(IVC) point as well as the pressure at IVC point during the intake valve opening duration. These results could be applied to almost all over the experimental conditions.

Performance Characteristics for the Gasoline Engine Injector (가솔린엔진 인젝터의 분무특성)

  • Lee, Sang-In;Lee, Sung-Won;Park, Sung-Young
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.526-530
    • /
    • 2009
  • 본 연구은 자동차용 가솔린엔진에 장착되는 인젝터의 연료공급 특성에 대한 것으로, 가솔린 엔진의 전자제어식 포트 연료분사는 분무장치와 흡기포트의 최적화 및 분무특성이 우수해야 엔진의 성능 향상 및 배기가스 저감의 목적을 이룰 수 있다. 4홀과 12홀 인젝터의 장착각 변화와 포트 마스킹의 형상변화에 따른 벽유량을 측정?분석하였고 분무가시화 실험을 통하여 분무성장과정과 분사각, 연료미립화 및 분무도달거리를 분석하였다. 벽류측정 실험을 통하여 벽류는 미립화정도와 흡기유동과 유속에 가장 큰 영향을 받는 것으로 판단되며, 12홀 인젝터 대비 4홀 인젝터는 분무압력에 따라 분무특성의 변화량이 크게 나타났다.

  • PDF

Flow Simulation of the throttle body for a Power Generation Engine (발전용 엔진 트로틀 바디의 유동해석)

  • Hwang, Jae-Woo;Kim, Chang-Su;Choi, Doo-Seck;Park, Sung-Young
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12b
    • /
    • pp.525-528
    • /
    • 2011
  • 1400cc급 발전용 엔진 트로틀 바디의 최적화 및 성능 향상을 위하여 유동해석을 수행하였다. 베르누이 정리를 기본으로, 성능을 발휘하는 주요 설계인자인 트로틀 바디 내부의 트로틀 밸브 각도 및 흡기부 곡률 등을 설계 변수로 유동해석을 수행하였다. 벤튜리관 흡입부의 곡률을 증가시켜 트로틀 바디에서 소모되는 흡기저항을 줄였다. 감소된 흡기저항은 펌핑로스를 저감하여 연비향상에 도움이 될 것으로 기대된다. 결과적으로 해석결과 분석을 통하여 최적화된 모델을 제시하였다.

  • PDF

A Study on Knocking Characteristics of a 300 kW Class CNG Engine for CHP (열병합 발전용 300 kW급 천연가스 엔진의 노킹 특성 연구)

  • Kim, Chang-Gi;Kim, Young-Min;Lee, Jang-Hee;Roh, Yun-Hyun;Ann, Tae-Keun
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.3
    • /
    • pp.13-19
    • /
    • 2008
  • Among the various prime movers for combined heat and power (CHP) system, the CNG engine is the most commonly used power generation equipment of which power is less than 1MW. The 300 kW class CNG engine for CHP can meet stringent emission regulations with the adoption of stoichiometric air-fuel ratio control and three way catalyst. As the thermal efficiency of the stoichiometric ratio engine is lower than that of lean burn engine, it is necessary to operate the stoichiometric engine at its minimum spark advance for the best torque (MBT). However, knock control should be introduced for the engine under high intake air temperature conditions because MBT operating conditions are generally very close to those of knock occurrence. In this study, engine performances and knocking characteristics were experimentally investigated for the CNG engine that needs to be operated at higher intake air temperature conditions than normal conditions.

  • PDF