• Title/Summary/Keyword: 에폭시 복합체

Search Result 108, Processing Time 0.016 seconds

The Effect of Surface Modification on the Disperisibilities and the Thermal Conductivities of Single-Walled Carbon Nanotube (SWCNT)/Epoxy Composites (표면 기능화된 단일벽 탄소나노튜브/에폭시 복합체의 분산 및 열전도도 특성)

  • Kim, Jiwon;Im, Hyungu;Kim, Jooheon
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.266-271
    • /
    • 2011
  • Single-walled carbon nanotube (SWCNT)/Epoxy composites were prepared for improving thermal conductivities and dispersion of SWCNTs in the epoxy matrix. Composites obtained different types of SWCNTs which are pristine and functionalized of the SWCNTs by acid and amine treatments. Three types of SWCNTs were dispersed in diglycidyl ether of bisphenol A (DGEBA) and bisphenol F (DGEBF). Enhanced interaction between functional groups on SWCNT and epoxy resins was evidenced by an improvement in the dispersion of the SWCNTs in the epoxy matrix. Thermal conductivity of composites containing acid SWCNTs were found to be much better than those containing pristine and amine treated SWCNTs.

Development of Epoxy Composites with SWCNT for Highly Thermal Conductivity (고방열 재료 개발을 위한 에폭시/단일벽 탄소나노튜브 복합체 개발)

  • Kim, Hyeonil;Ko, Heung Cho;You, Nam-Ho
    • Composites Research
    • /
    • v.33 no.1
    • /
    • pp.7-12
    • /
    • 2020
  • Over the past decade, liquid crystalline epoxy (LCER) has attracted much attention as a promising matrix for the development of efficient heat dissipation materials. This study presents a comprehensive study including synthesis, preparation and chacterization of polymer/inorganic composites using typical 4,4-diglycidyloxybiphenyl (DP) epoxy among LECR. To confirm the thermal conductivity of composite materials, we have prepared composite samples composed of epoxy resin and single-wall carbon nanotube (SWCNT) as a filler. In particular, DP composites exhibit higher thermal conductivity than commercial epoxy composites that use the same type of filler due to the highly ordered microstructure of the LCER. In addition, the thermal conductivity of the DP composite can be controlled by controlling the amount of filler. In particular, the DP composite containing a SWCNT content of 50 wt% has the highest thermal conductivity of 2.008 W/mK.

Influences of Liquid Rubber on the Surfacial and Mechanical Properties of Epoxy Composites (에폭시 복합체의 표면 및 기계적 특성에 미치는 액상고무의 효과)

  • Choi, Sei-Young;Chu, Jeoung-Min;Lee, Eun-Kyoung
    • Elastomers and Composites
    • /
    • v.43 no.2
    • /
    • pp.113-123
    • /
    • 2008
  • Epoxy resins are thermoset polymers that exhibit good adhesion, creep resistance, heat resistance, and chemical resistance. These polymers, however, give poor resistance to crack propagation and low impact strength. In this study, epoxy/carboxyl-terminated butadiene acrylonitrile (CTBN) and epoxy/amine-terminated butadiene acrylonitrile (ATBN) composites were prepared with different ratio of CTBN and ATBN to improve low impact strength of epoxy resin. The impact strength of epoxy/elastomeric composites shows high values with increasting nonpolar surface free energy while the tensile strength and the glass transition are decreased. The highest surface free energy, impact strength observed when 15 phr CTBN and 15 phr ATBN added, respectively. It can be concluded that as liquid rubber to improve impact strength of epoxy resin, ATBN is more preferable to CTBN.

하이브리드 탄소소재가 에폭시 복합체의 열전도도에 미치는 영향

  • An, Yu-Jin;Park, Ji-Seon;Sin, Gwon-U;Kim, Yun-Jin;Seo, Eun-Ha;Lee, Cheol-Seung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.187.2-187.2
    • /
    • 2014
  • 최근 다양한 카본 나노소재들이 열 전도성 필러로써 고분자 복합체의 열전도도 향상을 위해 연구되고 있다. 그러나 구조적 이방성을 갖는 탄소나노튜브(CNT) 혹은 그래핀나노플레이트(Graphene Nanoplatelet)를 복합체에 적용할 경우, 복합체의 수직 방향과 수평 방향에서의 열전도도가 3배 이상 차이가 나는 문제가 있다. 따라서 본 연구에서는 2차원의 GNP 표면 위에 1차원의 CNT를 직접 성장시킨 하이브리드 탄소소재를 이용하여 이러한 열전도도 이방성을 개선하고자 하였다. 하이브리드 탄소소재는 무전해 도금법과 열기상법으로 제조하였다. 합성된 하이브리드 탄소소재 및 CNT를 단독 혹은 혼합하여 필러를 만들고 이를 에폭시 기지 내에 분산시켜 복합체를 제작하였다. 필러 함량별, 필러 비율별로 제작된 복합체의 열전도도를 레이저 플래시 법으로 측정 비교하였다. 결과적으로 기존의 단일 필러들보다 열전도도 이방성이 1.5배 이상 개선된 방열용 에폭시 복합체를 제작할 수 있었다. 한편 하이브리드 탄소와 2% 이하의 CNT 배합에서 단독 필러 투입에 비해 45% 이상의 열전도율 향상을 확인하였다. 이는 미세구조 분석 및 성분 분석 결과, 필러 분산 정도가 열전도도 향상의 주요 인자로 작용하는 것을 확인하였고 기지 내 CNT가 열전도도 경로로 작용하기보다는 하이브리드 탄소소재의 균일한 분산에 영향을 준 것으로 사료된다.

  • PDF

Effect of Amino Modified Siloxanes with Two Different Molecular Weights on the Properties of Epoxy Composites for Adhesives for Micro Electronics (전자소재 접착제용 에폭시에 두 종의 다른 당량수를 갖는 아미노 변성 실록산이 미치는 영향)

  • Yu, Kihwan;Kim, Daeheum
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.104-108
    • /
    • 2011
  • In the non-conductive adhesives (NCAs) for adhesion of micro electro mechanical system (MEMS), there are some problems such as delamination and cracking resulting from the large differences of coefficients of thermal expansion (CTE) between NCAs and substrates. So, the addition of inorganic particles such as silica and nano clay to the CTEs composit have been applied to reduce the CTEs of the adhesives. Additions of the flexibilizers such as siloxanes have also been performed to improve the flexibility of epoxy composite. Amino modified siloxane (AMSs) were used to improve compatibility between epoxy and siloxane. In this study, glass transition temperatures (Tg) and moduli of those composites were measured to confirm the effects of AMS with two different equivalents on thermal/mechanical properties of AMS/epoxy composites. Tg of KF-8010/epoxy composites decreased from 148 to $122^{\circ}C$ and those of X-22-161A/epoxy composites decreased from 148 to $121^{\circ}C$. Moduli of KF-8010/epoxy composites decreased from 2648 to 2143 MPa by adding KF-8010 and moduli of X-22-161A/epoxy composites decreased from 2648 to 2014 MPa. In short, using long Si-O chain AMS leads to a greater decrease in moduli. However, haven't showed significant differences in Tg's.

Study on the Thin-walled carbon nanotubes (TWNTs)/Amine epoxy additive composite via supercritical fluid process (초임계 공정을 이용한 Thin-walled carbon nanotubes (TWNTs)/아민계 에폭시 첨가제의 복합체 제조)

  • Kim, Yong-Ryeol;Jeong, Hyeon-Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.486-491
    • /
    • 2014
  • We have been fabricated Thin-walled carbon nanotubes (TWNTs)/amine epoxy additives composite using Eco-friendly solvent system such as supercritical process and dry mixed process. TWNTs/amine epoxy additives composite has used as a curing agent for urethane based bisphenol A type epoxy resin. The thermo-mechanical property of the epoxy resin cured by TWNTs/amine epoxy additives composite is characterized by dynamic mechanical analysis(DMA) and dispersability of the nanotubes in the epoxy matrix is also confirmed by scanning electron microscope(SEM). As a results, the epoxy resin cured by TWNTs/amine epoxy additives composite with supercritical process shows enhanced dispersability of the TWNTs in the matrix and thermo-mechanical property when compare to dry mixed process.

Influence of Fluoro-illite on Flame Retardant Property of Epoxy Complex (에폭시 복합체의 난연 특성에 미치는 불소화 일라이트의 영향)

  • Yu, Hye-Ryeon;Jeong, Eui-Gyung;Kim, Jin-Hoon;Lee, Young-Seak
    • Polymer(Korea)
    • /
    • v.35 no.1
    • /
    • pp.47-51
    • /
    • 2011
  • In this study, illite, an environmental friendly, low cost, and high aspect ratio additive, was used to improve flame retardant property of epoxy and it was fluorinated to enhance dispersion of hydrophilic illite in hydrophobic epoxy by introducing hydrophobic functional groups. Fluorination of illite enhanced illite dispersion ill epoxy solution before curing and that in the complex after curing. These enhanced dispersions were attributed to the increased affinity of illite to hydrophobic epoxy solution induced by fluorination of illite and the increased intercalation of epoxy polymer or exfoliation of illite by epoxy curing. Hence, limited oxygen index(LOI) of fluorinated illite/epoxy complex increased by 24%, compared to that of epoxy, suggesting that the preparation of fluorinated illite/epoxy complex increased their flame retardant properties.

The Effect of CTBN Rubber on Mechanical Properties of Epoxy-Clay Nanocomposite (CTBN 고무 첨가에 따른 에폭시-점토 나노복합체의 물성 변화)

  • Lee, Hun-Bong;Kim, Ho-Gyum;Yoon, Keun-Byoung;Lee, Dong-Ho;Min, Kyung-Eun
    • Polymer(Korea)
    • /
    • v.32 no.1
    • /
    • pp.31-37
    • /
    • 2008
  • The effect of MMT on mechanical properties of CTBN toughened epoxy nanocomposite is studied. In case of CTBN toughened epoxy nanocomposite with modified MMT, it is found that the enhancement of toughness and tensile properties are exhibited in CTBN toughened epoxy nanocomposite with modified MMT From the results of fractured surface morphology of sample, it is clearly shown that the improved mechanical properties can be obtained in CTBN toughened nanocomposite due to the significant energy dissipation mechanism by MMT loading.

Synthesis and Properties of Epoxy-Clay Nanocomposites (에폭시-점토 나노복합체의 제조 및 성질)

  • 이충로;인교진;공명선
    • Polymer(Korea)
    • /
    • v.27 no.4
    • /
    • pp.392-395
    • /
    • 2003
  • Phosrhonium salt exchanged montmorillonites were prepared from a reaction between alkyl triphenyl phosponium bromide and Na$^{+}$-montmorillonite. Epoxy-clay nanocomposites were also prepared by using cycloaliphtic epoxy, methyl tetrahydrophthalic anhydride as a hardener, and triphenyl butyl phosphonium bromide as an accelerator. TEM and XRD results suggested that clay minerals in the epoxy-montmorillonites composite were intercalated. Mechanical properties such as tensile modulus and strength were measured and the effect of nanocomposite formation was also discussed.

Synergic Effect of Clay on the Mechanical and Electrical Properties of SWCNT/Epoxy Composites (SWCNT/에폭시 복합체의 기계적 전기적 성질에 미치는 Clay의 상승효과)

  • Choi, Won Seok;Ryu, Sung Hun
    • Elastomers and Composites
    • /
    • v.49 no.3
    • /
    • pp.204-209
    • /
    • 2014
  • Sodium-montmorillonite ($Na^+$-MMT) was introduced into single wall carbon nanotube (SWCNT)/epoxy composite to investigate the effect of MMT size and MMT/SWCNT ratio on the mechanical and electrical properties of composite. Three different sizes of MMTs were used and all were found to function as effective dispersion aids for SWCNTs. Mechanical properties of SWCNT/epoxy composite increased with MMT content; tending to decrease once the MMT content reached a critical level. However, the surface electrical resistance decreased with increasing MMT content and tended to increase after the critical content was reached. Critical MMT/SWCNT ratio for maximum mechanical properties and minimum electrical resistivity was strongly dependent on the MMT size. Critical MMT/SWCNT ratio was decreased with MMT size.