DOI QR코드

DOI QR Code

Synergic Effect of Clay on the Mechanical and Electrical Properties of SWCNT/Epoxy Composites

SWCNT/에폭시 복합체의 기계적 전기적 성질에 미치는 Clay의 상승효과

  • Choi, Won Seok (Department of Chemical Engineering, Kyung Hee University Yongin) ;
  • Ryu, Sung Hun (Department of Chemical Engineering, Kyung Hee University Yongin)
  • 최원석 (경희대학교 공과대학 화학공학과) ;
  • 류승훈 (경희대학교 공과대학 화학공학과)
  • Received : 2014.07.07
  • Accepted : 2014.08.22
  • Published : 2014.09.30

Abstract

Sodium-montmorillonite ($Na^+$-MMT) was introduced into single wall carbon nanotube (SWCNT)/epoxy composite to investigate the effect of MMT size and MMT/SWCNT ratio on the mechanical and electrical properties of composite. Three different sizes of MMTs were used and all were found to function as effective dispersion aids for SWCNTs. Mechanical properties of SWCNT/epoxy composite increased with MMT content; tending to decrease once the MMT content reached a critical level. However, the surface electrical resistance decreased with increasing MMT content and tended to increase after the critical content was reached. Critical MMT/SWCNT ratio for maximum mechanical properties and minimum electrical resistivity was strongly dependent on the MMT size. Critical MMT/SWCNT ratio was decreased with MMT size.

단일벽 카본나노튜브 (SWCNT)/에폭시 복합체에 sodium-montmorillonite ($Na^+$-MMT)을 첨가하여 MMT크기와 MMT/SWCNT 비율이 복합체의 기계적 전기적 성질에 미치는 영향에 대하여 살펴보았다. 다른 크기를 갖는 3종류의 MMT를 사용하였으며, 모두 SWCNT의 분산에 효과적임을 알 수 있었다. MMT함량이 증가함에 따라 SWCNT/에폭시 복합체의 기계적인 성질은 증가하였으며, 임계함량에 도달한 후에는 감소하기 시작하였다. 그러나 표면전기저항은 MMT 함량이 증가함에 따라 감소하였으며, 임계함량에 도달한 후 증가하기 시작하였다. 최대 기계적 성질과 최소 전기특성은 임계 MMT/SWCNT 비율은 MMT 크기에 크게 의존하였으며, 이는 MMT크기가 증가함에 따라 감소하였다.

Keywords

References

  1. Y. Sabba and E. L. Thomas, "High-Concentration Dispersion of Single-Wall Carbon Nanotubes", Macromolecules, 37, 4815 (2004). https://doi.org/10.1021/ma049706u
  2. G. L. Hwang, Y. T. Shieh, and K. C. Hwang, "Efficient load transfer to polymer-grafted multiwalled carbon nanotubes in polymer composites", Adv. Funct. Mater., 14, 487 (2004). https://doi.org/10.1002/adfm.200305382
  3. M. A. Lopez Manchado, L. Valentini, J. Biagiotti, and J. M. Kenny, "Thermal and mechanical properties of single-walled carbon nanotubes-polypropylene composites prepared by melt processing", Carbon, 43, 1499 (2005). https://doi.org/10.1016/j.carbon.2005.01.031
  4. W. S. Choi and S. H. Ryu, "Improvement of interfacial interaction via ATRP in polycarbonate/carbon nanotube nanocomposites", Colloids. Surf. A: Physicochem. Eng. Asp., 375, 55 (2011). https://doi.org/10.1016/j.colsurfa.2010.11.055
  5. M. Lahelin, M. Annala, A. Nykanen, J. Ruokolainen, and J. Seppala, "In situ polymerized nanocomposites: Polystyrene/CNT and Poly(methyl methacrylate)/CNT composites", Compos. Sci. Technol., 71, 900 (2011). https://doi.org/10.1016/j.compscitech.2011.02.005
  6. T. Chatterjee, K. Yurekli, V. G. Hadjiev, and R. Krishnamoorti, "Single-walled carbon nanotube dispersions in poly(ethylene oxide)", Adv. Funct. Mater., 15, 1832 (2005). https://doi.org/10.1002/adfm.200500290
  7. Y. H. Liao, O. Marietta-Tondin, Z. Liang, C. Zhang, and B. Wang, "Investigation of the dispersion process of SWNTs/SC-15 epoxy resin nanocomposites", Mater. Sci. Eng. A, 385, 175 (2004). https://doi.org/10.1016/j.msea.2004.06.031
  8. J. Chen, R. Ramasubramaniam, C. Xue, and H. Liu, "A versatile, molecular engineering approach to simultaneously enhanced, multifunctional carbon nanotube-polymer composites", Adv. Funct. Mater., 16, 114 (2006). https://doi.org/10.1002/adfm.200500590
  9. H. Park, J. Zhao, and J. P. Lu, "Effects of sidewall functionalization on conducting properties of single wall carbon nanotubes", Nano Lett., 6, 916 (2006). https://doi.org/10.1021/nl052488d
  10. R. R. Nayak, K. Y. Lee, A. M. Shanmugharaj, and S. H. Ryu, "Synthesis and characterization of styrene grafted carbon nanotube and its polystyrene nanocomposite", Eur. Polym. J., 43, 4916 (2007). https://doi.org/10.1016/j.eurpolymj.2007.04.012
  11. M. O. Lisunova, Y. O. Lisunova, S. Lee, J. Kim, K. Joo, and D. Zang, "The influence of organophilic clay on field electron emission uniformity and lifetime of screen printed carbon nanotube film", Thin Solid Films, 518, 279 (2009). https://doi.org/10.1016/j.tsf.2009.06.013
  12. C. Tang, L. Xiang, J. Su, K. Wang, C. Yang, Q. Zhang, and Q. Fu, "Largely improved tensile properties of chitosan film via unique synergistic reinforcing effect of carbon nanotube and clay", J. Phys. Chem. B, 112, 3876 (2008). https://doi.org/10.1021/jp709977m
  13. V. Levchenko, Ye. Mamunya, G. Boiteux, M. Lebovka, P. Alcouffe, G. Seytre, and E. Lebedev, "Influence of organoclay on electrical and mechanical properties of PP/ MWCNT/OC nanocomposites", Eur. Polym. J., 47, 1351 (2011). https://doi.org/10.1016/j.eurpolymj.2011.03.012
  14. S. Peterbroeck, M. Alexandre, J. B. Nagy, N. Moreau, A. Destree, F. Monteverde, A. Rulmont, R. Jerome, and Ph. Dubois, "Polymer layered silicate/carbon nanotube nanocomposite: morphological and rheological properties", Macromol. Symp., 221, 115 (2005)
  15. L. Liu, J. G. Grunlan, "Assisted dispersion of carbon nanotubes in conductive epoxy nanocomposites", Adv. Funct. Mater., 17, 2343 (2007). https://doi.org/10.1002/adfm.200600785