• 제목/요약/키워드: 에지 추출

검색결과 576건 처리시간 0.024초

웨이블렛 변환 계수의 비트 플레인을 이용한 영상부호화 (Image Coding Using Bit-Planes of Wavelet Coefficients)

  • 김영로;홍원기;고성제
    • 한국통신학회논문지
    • /
    • 제22권4호
    • /
    • pp.714-725
    • /
    • 1997
  • 본 논문에서는 웨이블렛 변환된 영상을 비트 플레인으로 분해하여 효과적으로 영상을 부호화하는 방법을 제안한다. 제안하는 방법은 원영상을 웨이블렛 변환하여 저대역 부분은 그대로 무손실 전송하고 고대역 부분은 비트 플레인(bit-plane)으로 분해한 다음, 각 비트 플레인에 나타나는 이진 영상들을 각각의 특성에 따라 부호화한다. 부호화 방법은 먼저 원영상을 웨이블렛 변환한 후, 부동소수점 값을 가지는 웨이블렛 변환 계수를 정수화하고 이 값을 N비트 데이터와 부호 비트로나눈다. 이러한 이진값으로 표현된 그레이 원영상을 비트 플레인으로 분할하여 N개의 이진 영상과 부호 비트에 대응하는 1개의 부호 비트 플레인을 생성시킨다. N개의 비트 플레인에 존재하는 이진 영상은 상대적으로 화질에 미치는 중요도가 적은 하위 비트 플레인의 고대역 부분을 제거한 후, 2차원 이진 블록 부호화 방법을 사용하여 부호화한다. 부호 비트 플레인은 N비트로 데이터의 값이 0이 아닐 경우 그에 해당하는 부호값 만을 부호화하여 압축효과를 높일 수 있었다. 본 논문에서 제안한 방법은 웨이블렛 변환 계수로부터 추출된 비트 플레인 중에서 화질에 크게 영향을 주는 중상위 비트 플레인의 이진영상들이 원영상의 에지(edge) 정보와 함께 지역적으로 모여 있는 특성을 보임에 따라 효과적인 부호화가 가능하다. 또한 비트 플레인 부호화 방식은 상대적으로 영상의 화질에 중요도가 적은 하위 비트 플레인을 쉽게 분리하여 제거함으로서 적정한 영상화질을 유지하면서 비트율(bit rate)을 조정할 수 있는 장점이있다. 제안한 방법은 실험을 통하여 기존의 벡터 양자화 기법에 의한 부호화 방법보다 압축율이나 PSNR 측면에서 성능이 좋음을 입증하였다.

  • PDF

적응적 가중치를 이용한 스테레오 정합 기법 (Adaptive weight approach for stereo matching)

  • 윤희주;황영철;차의영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 지능정보 및 응용 학술대회
    • /
    • pp.73-76
    • /
    • 2008
  • 본 논문에서는 스테레오 영상의 대응점을 찾기 위한 영역 기반 스테레오 정차 기법을 제안한다. 영역 기반 스테레오 정합의 주된 문제점은 윈도우 크기에 따라 다른 결과를 초래한다는 것이다. 지금까지 대부분의 영역기반 정합 기법은 윈도우의 크기를 반복적으로 갱신하는 방법을 사용하였으나, 이는 초기 시차(disparity)에 매우 민감하며 계산 비용도 많이 든다. 이러한 문제를 해결하기 위해, 본 논문에서는 스테레오 영상의 특징 정보를 이용하여 가중치를 생성하고, 각 영상의 대응점을 탐색하여 정합한다. 먼저, 평행하게 설치된 두 대의 카메라로부터 획득된 영상에 대한 에지를 검출하여 특징점을 추출한다. 이를 이용하여 두 영상간의 상관관계를 구하여 가중치 함수를 생성하고, 각 영상에 대한 가중치를 적용한 후, 기준영상에 대한 대응점을 찾아 정합한다. 제안된 방법의 성능을 평가하기 위하여 ground truth가 존재하는 다양한 스테레오 영상을 이용하여 실험하였으며, 실험결과 다양한 영상에서도 적응적인 가중치를 생성함으로써 향상된 결과를 보였다.

  • PDF

패턴 인식 알고리즘 기반 휴머노이드 경로 시스템 개발 (Development of Path-Finding System for Humanoid Robots Based on Image Pattern Recognition)

  • 박현;은진혁;박혜련;석정봉
    • 한국통신학회논문지
    • /
    • 제37C권10호
    • /
    • pp.925-932
    • /
    • 2012
  • 본 논문에서는 패턴 인식 알고리즘을 기반으로 인간 형태를 가진 휴머노이드 로봇의 보행 동작을 제어하는 경로 인식 시스템을 개발하였다. 휴머노이드 로봇이 효과적인 작업 수행을 할 수 있도록 행동 프리미티브를 정의 하였으며, Canny 에지 검출 알고리즘을 적용한 보도 블록의 패턴 및 색상 추출, 이를 기반으로 한 이동 방향을 인식하는 알고리즘 제안하고, 리눅스 운영체제와 영상 카메라가 장착된 소형 휴머노이드 임베디드 시스템에 구현하였다. 제안 알고리즘의 성능 실험을 휴머노이드 로봇의 동작 속도 및 인식율에 관점에서 수행하였으며, 다양한 현실 환경을 반영하기 위해 경사도 및 조도 변화를 적용하였다. 실험 결과 제안 알고리즘은 다양한 환경에서 시각 장애인의 길안내 도우미 로봇으로서 적절한 수준에서 반응함을 확인하였다.

XPath 표현식의 필터링을 통한 XML 접근 제어 기법 (An XML Access Control Method through Filtering XPath Expressions)

  • 전재명;정연돈;김명호;이윤준
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제32권2호
    • /
    • pp.193-203
    • /
    • 2005
  • XML은 인터넷 상에서 데이타의 표현 및 전송 표준으로 인식되고 있다. XPath는 XML 문서의 특정 부분을 규정하는 표준으로, XML 질의 처리와 접근 제어에 적합한 언어이다 본 논문에서는 XPath를 사용자 질의 및 접근 제어 정보를 표현하는 방법으로 사용하는 XML 접근 제어 방법을 제안한다. 제안하는 방법은 접근 제어 XPath 표현식을 통해 질의 XPath 표현식을 필터링하여 XML 문서에 대한 접근을 제어한다. 이를 위하여 XML 접근 제어 트리(XACT)를 정의하고, 이 트리를 이용하여 질의 XPath 표현식에서 접근 허용되는 부분만을 추출한다. XACT는 XML 엘리먼트들에 대한 구조적 요약으로 에지를 구성하고, 접근 제어 정보로 노드를 구성한 구조이다. 제안하는 방법의 정확성을 보이고, 기존방법과의 성능을 비교한다

규칙기반 뉴스 비디오 앵커 TIT 검출방법: KBS와 MBC 9시 뉴스를 중심으로 (Rule-Based Anchor Shot Detection Method in News Video: KBS and MBC 9 Hour News Cases)

  • 유헌우;이명의
    • 한국산학기술학회논문지
    • /
    • 제8권1호
    • /
    • pp.50-59
    • /
    • 2007
  • 본 논문은 뉴스 비디오를 색인, 검색하기 위한 관리 시스템의 기본 기술인 앵커 샷을 검출하는 방법을 제안한다. 이를 위해 현재 가장 많은 사람이 시청하는 'KBS 9시 뉴스'와 'MBC 9시 뉴스'의 앵커 샷의 특징 요소를 분석하여 4단계의 규칙기반 검출방법을 제안한다. 먼저 전처리로 비디오의 샷 경계를 검출하고 첫 번째 프레임을 키 프레임으로 선택한 후에 다음의 4가지 조건을 모두 만족하면 해당 샷을 앵커 샷으로 판단한다. 1) 키 프레임에 앵커의 얼굴이 존재하는 가의 여부, 2) 에지의 분포가 구조적으로 적합한지의 여부, 3) 배경의 색상 정보를 추출하여 기존의 앵커모델의 색상과 유사한지의 여부, 마지막으로 4) 샷 내의 움직임 비율이 일정 임계치 이하인지의 여부를 판단한다. 제안된 방법의 성능을 보이기 위해, 총 108분 분량의 서로 다른 날에 저장된 KBS와 MBC의 9시 뉴스 비디오에 대해 실험한 결과 평균적으로 0.91의 정확도와 1.0의 회수율, 0.98의 F-값을 얻을 수 있었다.

  • PDF

알루미늄 캔재의 이어링률 측정을 위한 비젼 시스템 구현 (Implementation of Vision System for Measuring Earing Rate of Aluminium CAN)

  • 이양범;신신범
    • 융합신호처리학회논문지
    • /
    • 제6권1호
    • /
    • pp.8-14
    • /
    • 2005
  • 본 연구는 압연된 알루미늄 원판으로부터 추출된 캔재를 CCD 카메라를 이용하여 이어링률을 측정하는 시스템 개발이 주 목적이다. 입력받은 영상을 최적화하기 위하여 영상의 객체 분리 및 위치 보정을 해주었고, 전처리 단계로서 히스토그램 평활화에 의한 선명도를 개선시켜 준 다음 로버트 마스크를 이용하여 에지를 검출하였다. 현장에서는 알루미늄 특성상 발생된 캔재의 각 4개의 귀와 골의 높이를 디지털 버니어 캘리퍼스를 이용하여 수작업으로 측정하는데 처리 속도면에서 알루미늄 캔재의 1방향의 높이당 최소 3번 측정에 의하여 30초가 소요되었다. 반면에 스텝모터를 이용하여 캔재를 45°씩 회전시키면서 각각의 귀와 골의 높이 측정을 본 시스템을 적용하였을 때 0.02초의 시간이 소요되었다. 따라서 본 시스템을 이용한 결과 산업 현장에서 제품 처리 결과와 비교, 만족할 만한 성능이 입증되었다.

  • PDF

신경 텐서망을 이용한 컨셉넷 자동 확장 (Automatic Expansion of ConceptNet by Using Neural Tensor Networks)

  • 최용석;이경호;이공주
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권11호
    • /
    • pp.549-554
    • /
    • 2016
  • 컨셉넷은 일반상식을 노드(개념)와 에지(관계)로 표현해 놓은 그래프 형태의 지식 베이스이다. 완전한 지식 베이스를 구축하는 것은 매우 어려운 문제이기 때문에 지식 베이스는 미완결된 형태의 데이터를 담고 있는 경우가 많다. 불완전한 지식을 담고 있는 지식 베이스로부터의 추론 결과는 신뢰하기 어렵기 때문에 지식의 완결성을 높이기 위한 방법이 필요하다. 본 논문에서는 신경 텐서망을 이용하여 컨셉넷의 지식 미완결성 문제를 완화해 보고자 한다. 컨셉넷에서 추출한 사실주장(assertion)을 이용하여 신경 텐서망을 학습시킨다. 학습된 신경 텐서망은 두 개의 개념 정보를 입력으로 받고, 그 두 개념이 특정 관계로 연결될 수 있는지를 나타내는 점수값을 출력한다. 이와 같이 신경 텐서망은 노드들의 연결 차수(degree)를 높여, 컨셉넷의 완결성을 증대시킬 수 있다. 본 연구에서 학습시킨 신경 텐서망은 평가데이터에 대해서 약 87.7%의 정확도를 보였다. 또한 컨셉넷에 연결이 없는 노드 쌍에 대하여 85.01%의 정확도로 새로운 관계를 예측할 수 있었다.

시·공간 정보를 이용한 동영상의 인공 캡션 검출 (Detection of Artificial Caption using Temporal and Spatial Information in Video)

  • 주성일;원선희;최형일
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제1권2호
    • /
    • pp.115-126
    • /
    • 2012
  • 동영상에 포함되는 인공 캡션은 영상과 관계있는 의미정보를 포함한다. 이러한 영상을 표현하는 정보를 이용하기 위해 캡션을 추출하는 연구는 근래에 들어 활발히 진행되고 있다. 기존 방법들은 대부분 정지영상에서 캡션을 검출하였다. 하지만 동영상의 경우에는 유용한 시간정보가 있다. 따라서 본 연구는 이러한 시간정보를 사용한 캡션영역 검출방법을 제안한다. 먼저, 캡션후보영역 검출을 위해 문자출현맵을 생성하고, 후보영역 매칭 과정에서 지속후보영역을 검출한다. 검출된 지속후보영역의 소멸성 검사를 통해 캡션의 소멸 여부를 검출하고 소멸된 캡션 일 경우 시 공간정보에 의한 병합과정을 통해 캡션후보영역을 결정한다. 마지막으로 결정된 캡션후보영역을 검증하기 위하여 에지 방향 히스토그램을 이용한 신경망 인식기를 통하여 최종캡션영역을 검출한다. 실험을 위해 다양한 크기와 형태, 위치의 캡션을 포함하는 동영상에 대해 영역검출의 성능을 평가하고자 Recall과 Precision을 이용하여 제안하는 방법의 영역검출에 대한 효율성을 입증한다.

경량 깊이완성기술을 위한 효율적인 자기지도학습 기법 연구 (Efficient Self-supervised Learning Techniques for Lightweight Depth Completion)

  • 박재혁;민경욱;최정단
    • 한국ITS학회 논문지
    • /
    • 제20권6호
    • /
    • pp.313-330
    • /
    • 2021
  • 카메라와 라이다가 탑재된 자율주행 시스템에서 깊이완성기술을 통해 조밀한 깊이추정을 할 수 있다. 특히, 자기지도학습을 이용하면 깊이정답이 없는 주행데이터로도 깊이완성 네트워크의 학습이 가능하다. 실제 자율주행환경에서 이러한 깊이완성의 출력은 다른 알고리즘들의 입력으로 사용되므로 매우 빠른 지연속도를 요구한다. 그래서 본 논문에서는 종래의 연구들처럼 네트워크를 고도화하여 정확도를 높이기보단 추론속도를 극대화한 형태의 깊이완성 네트워크를 사용한다. GPU 연산에 최적화된 RegNet 인코더를 사용하고 네트워크의 병렬성을 고려한 U-Net 형태의 네트워크를 설계한다. 대신, 본 논문에서는 자기지도학습 과정에서 정확도를 높일 수 있는 몇 가지 기법들을 제시한다. 제시하는 기법들은 신뢰할 수 없는 라이다 입력에 대한 강인함을 높이고 사전에 추출한 시맨틱 정보를 바탕으로 에지와 하늘 영역에 대한 깊이 추정 품질을 향상시킨다. 실험을 통해 우리의 모델은 매우 경량임에도 (2.42ms at 1280x480) 노이즈에 강하며 최신 연구들과 대등한 정확도를 보임을 확인한다.

상황인식 컴퓨팅을 위한 사람 움직임 이벤트 인식 (Recognition of Events by Human Motion for Context-aware Computing)

  • 최요환;신성윤;이창우
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권4호
    • /
    • pp.47-57
    • /
    • 2009
  • 최근 컴퓨터비젼 분야에서 이벤트 검출 및 인식이 활발히 연구되고 있으며, 도전적인 주제들 중 하나이다. 본 논문에서는 사무실 환경에서 발생할 수 있는 이벤트의 검출 및 인식을 위한 방법을 제안한다. 제안된 방법은 MHI(Motion History Image) 시퀀스(sequence)를 이응한 인간의 모션을 분석하며, 사람의 처형과 착용한 옷의 종류와 색상, 그리고 카메라로부터의 위치관계에 불변한 특성을 가진다. 제안된 방법은 기존의 방법들 중, 칼라 정보를 이용한 방법에 비해 조명의 변화에 민감하지 않은 장점이 있으며, 관심의 대상이 되는 객체의 외형과 같은 사전지식에 의존하는 방법에 비해 스케일에 민감하지 않은 장점이 있다. 에지검출 기술을 HMI 순서 영상 정보와 결합하여 사람 모션의 기하학적 특징을 추출한 후, 이벤트 인식의 기본정보로 활용한다. 제안된 방법은 단순한 이벤트 검출 프레임웍을 사용하기 때문에 검출하고자 하는 이벤트의 설명만을 첨가하는 것으로 확장이 가능하다. 또한, 제안된 방법은 컴퓨터비젼 기술에 기반한 많은 감시시스템 뿐 아니라 상황인식 기반의 이벤트 검출 시스템에 핵심기술이다.