• 제목/요약/키워드: 에지검출 기법

검색결과 187건 처리시간 0.02초

AWGN 환경에서 화소매칭을 이용한 변형된 가중치 필터 알고리즘 (Modified Weight Filter Algorithm using Pixel Matching in AWGN Environment)

  • 천봉원;김남호
    • 한국정보통신학회논문지
    • /
    • 제25권10호
    • /
    • pp.1310-1316
    • /
    • 2021
  • 최근 인공지능과 IoT 기술의 발달에 따라 물체 추적, 의료 영상, 객체 인식과 같은 영상처리에 대한 중요성이 높아지고 있다. 특히 전처리 과정에서 사용되는 잡음제거 기술은 시스템에서 영상의 중요성이 높아짐에 따라 잡음을 효율적으로 제거하며 세부적인 특징을 보존하는 성능을 요구하고 있다. 본 논문에서는 AWGN 환경에서 화소매칭 기반의 변형된 가중치 필터를 제안한다. 제안한 알고리즘은 영상에서 화소값이 크게 변하는 고주파성분을 보존하기 위해 화소매칭 기법을 사용하며, 주변 영역에서 연관성이 높은 패턴을 지닌 영역을 검출하여 출력계산에 필요한 매칭 화소값을 분류한다. 최종 출력은 필터링 과정에서 에지성분을 고려하기 위해 중심화소와 매칭화소 사이의 격차값 및 공간적 거리에 따라 가중치를 계산하여 구한다.

단일 카메라 영상으로부터 골프 스윙의 자동 분석 (Automatic analysis of golf swing from single-camera video sequences)

  • 김병기
    • 한국산업정보학회논문지
    • /
    • 제14권5호
    • /
    • pp.139-148
    • /
    • 2009
  • 본 논문에서는 단일 카메라로부터 입력된 2차원 측면 골프 스윙 비디오 영상으로부터 사람의 개입 없이 스윙을 자동으로 분석하는 방법을 제안하였다. 2차원 환경에서 스윙 자동분석에 필요한 특징들을 정의 및 추출하고, 에지 검출과 직선 추출을 비롯한 다양한 영상처리 기법을 이용하여 자동 스윙 분석 방법을 제시 하였다. 기존 스윙분석 시스템이나 관련 연구들과 비교하여 제안한 방법은 다음과 같은 두 가지 특징을 갖는다. 첫째, 기존의 스윙 자동분석이 상대적으로 복잡하고 고가인 3차원 환경에서만 가능하였지만 제안한 방법은 2차원 환경에 서도 가능하다. 둘째, 기존의 2차원 스윙분석 시스템들은 골프 전문가에 의한 분석이 필요하지만 제안한 방법은 사람의 개입 없이 자동적으로 이루어지므로 사용이 편리하다. 제안한 스윙특징 추출 및 분석 방법을 20장의 스윙영상에 대하여 실험한 결과, 제안한 방법이 스윙 특징 추출 및 분석에 유용함을 확인하였다.

지정맥 인식을 위한 가상 코어점 검출 및 ROI 추출 (Virtual core point detection and ROI extraction for finger vein recognition)

  • 이주원;이병로
    • 한국정보전자통신기술학회논문지
    • /
    • 제10권3호
    • /
    • pp.249-255
    • /
    • 2017
  • 지정맥 인식 기술은 손가락에 적외선 광을 조광하여 손가락에 있는 정맥 영상을 획득한 다음, 특징 추출, 매칭 등의 과정을 거쳐 개인을 인증하는 방법이다. 지정맥 인식을 위해 손가락 외각을 검출함에 있어 2차원 마스크(mask)를 기반한 2차원 컨볼루션(2-Dimension convolution) 처리방법은 저가(low cost)의 마이크로프로세서 또는 마이크컨트롤러에 적용할 때 많은 연산시간이 소요된다. 이러한 문제점을 개선하고 인식을 향상시키기 위해 본 연구에서는 2차원 마스크와 2차원 컨볼루션을 사용하지 않고 픽셀들 간의 차의 절대 값과 역치(threshold)를 기반을 둔 이동평균필터링, 가상의 코어점 기반한 ROI 추출법 등을 제안하였고, 제안된 방법의 성능을 평가하기 위해 600개 지정맥 영상을 사용하여 에지 추출속도와 ROI 영역 추출의 정확도 등을 기존의 방법들과 비교 평가 하였다. 그 결과, 제안된 방법의 처리속도가 기존의 방법보다 최소 2배 이상의 빠른 처리속도를 보였으며, ROI 추출의 정확도는 기존의 방법보다 6% 이상의 성능 향상을 보였다, 이러한 결과로부터 제안된 기법을 저가의 마이크로프로세서에 적용한다면, 빠른 처리속도로 높은 인식률을 제공할 것으로 판단된다.

원형에너지가 추가된 p-Snake를 이용한 윤곽선 추출 기법 (Contour Extraction Method using p-Snake with Prototype Energy)

  • 오승택;전병환
    • 전자공학회논문지
    • /
    • 제51권4호
    • /
    • pp.101-109
    • /
    • 2014
  • 임의의 물체 영상에서 정확한 윤곽선을 찾아내는 것은 영상 처리 관련 시스템을 구축하는데 있어 필수적인 요소이다. 특히, 자동화된 생산 공정에서 생산품의 검사를 위한 비전시스템을 구축하다면 직선, 원 등의 정형화된 모형에 대한 윤곽선의 검출이 매우 중요하다. 본 논문에서는 원형(prototype) 에너지를 추가하여 개선된 윤곽선 추출 알고리즘으로 원형적응 동적윤곽선 모델, p-Snake를 제안한다. 제안 방법은 원형분석을 위하여 물체 영상에 소벨 연산을 수행한 후, 기존 스네이크 알고리즘을 적용하여 초기 윤곽선을 찾는다. 이후 초기 윤곽선 정보에 근거하여 직선, 원 등의 원형(prototype)을 분석하고, 원형 에너지를 정의하여 기존의 스네이크 함수에 추가적인 에너지 항목으로 사용함으로써 물체의 최종 윤곽선을 검출하였다. 산업현장의 배경을 가정한 환경에서 취득된 340장의 영상에 대하여 실험한 결과, 잡음이나 조명 등의 이유로 물체와 배경의 구분이 선명하지 않거나 영상에서 에지가 충분히 존재하지 않는 경우에도 윤곽선을 추출할 수 있음을 확인할 수 있었다. 또한 원형(prototype)과 얼마나 일치하는 가를 나타내는 척도인 유사도의 경우, 제안한 p-ACM으로 추출한 윤곽선의 원형 유사도가 ACM의 처리 결과에 비해 9.85%가량 우수한 것으로 나타났다.

영역기반 가중치 맵을 이용한 멀티스팩트럼 플래시 영상 획득 (Multi-spectral Flash Imaging using Region-based Weight Map)

  • 최봉석;김대철;이철희;하영호
    • 전자공학회논문지
    • /
    • 제50권9호
    • /
    • pp.127-135
    • /
    • 2013
  • 저조도 환경에서 카메라로 영상을 획득하기 위해 일반적으로 가시광 플래시를 사용하거나 장노출 기법을 사용하게 된다. 그러나 가시광 플래시를 사용할 때 플래시 광에 의한 색 왜곡이나 적목 현상, 눈부심에 의한 거부감을 발생시킨다. 또한 장노출을 사용하게 되면 물체의 움직임에 의한 흔들림 현상이 발생하게 된다. 따라서 최근에는 이러한 단점을 극복하고, 저조도 환경에서 고화질의 영상을 획득하기 위하여 멀티 스팩트럴 플래시(Multi-spectral flash image)를 이용하여 영상을 획득하는 방법이 소개되었다. 이 방법은 가시광과 UV/IR스펙트럼의 다섯 채널을 이용하여 가시광영상의 색 정보와 UV/IR 스팩트럼 영상의 세부정보를 최적화하여 영상을 획득하는 방법이다. 하지만, 픽셀 기반의 최적화 과정에 있어 색 왜곡과 다른 잡음을 발생시키게 된다. 따라서 본 논문에서는 이러한 색 왜곡과 잡음을 개선하기 위해 영역 기반의 가중치 맵을 최적화 방법에 적용하여 색 왜곡을 개선하는 알고리즘을 제안한다. 먼저, 영상에 대하여 Canny 에지 검출 방법을 사용하여 영상의 윤곽을 검출하였다. 이를 가중치 맵으로 최적화방법에 적용함으로, 세부 영역에 대하여 UV/IR 플래시 영상의 정보에 가중치를 부여하고, 평탄한 영역에 대하여 가시광 영상의 색 정보를 가중치를 부여하여 색 왜곡을 개선하였다. 제안한 방법을 평가하기 위하여 실험을 통하여 제안한 방법과 이전방법을 비교하였고, 객관적 평가와 주관적 평가 모두 제안한 방법이 우수한 성능을 나타내었다.

격자 단위 특징값을 이용한 도로 영상의 차량 영역 분할 (Vehicle Area Segmentation from Road Scenes Using Grid-Based Feature Values)

  • 김구진;백낙훈
    • 한국멀티미디어학회논문지
    • /
    • 제8권10호
    • /
    • pp.1369-1382
    • /
    • 2005
  • 도로 영상에서 차량 영역을 분할하는 차량 영역 분할(vehicle segmentation) 문제는 지능형 교통 시스템을 비롯한 다양한 응용 분야들에서 중요하게 사용되는 기본 연산(fundamental operation)이다. 본 연구에서는 야외의 도로 상에 설치된 CCD카메라에서 촬영된 정지 영상으로부터 차량 영역을 찾아내는 효율적인 방법을 제안한다 제안하는 방법은 입력되는 영상들을 격자 단위로 분할하여 각 격자에서의 에지 검출 결과를 대표하는 특징값(feature value)들을 통계적으로 분석한 후, 이를 바탕으로 최적해를 구한다. 전처리 과정에서는 다양한 외부 환경에서 촬영한 배경 영상들에 대해서 각 격자에서의 특징값들을 통계 처리한다. 입력된 차량 영상에서는 각 격자의 특징값이 배경 영상의 대응되는 격자에서의 특징값과 통계적으로 얼마나 오차를 보이냐에 따라, 배경 영역인지 차량 영역인지를 판단한다. 격자 별로 차량 영역에 해당하는 지를 판정한 뒤, 이 결과에 동적 프로그래밍(dynamic Programming) 기법을 이용하여 차량을 포함하는 최적의 직사각형 영역을 찾아낸다. 본 논문에서 제안하는 방법은 통계 처리와 전역 탐색 기법을 사용하므로 휴리스틱에 주로 의존하는 기존 연구들에 비해 좀더 체계적이다. 또한, 배경 영상에 대한 통계 처리는 흐리거나 맑은 등의 날씨 변화 및 바람이나 진동에 의한 카메라의 흔들림과 같은 다양한 외부 요인들이 가져올 수 있는 노이즈나 오차에 대해서도 높은 신뢰성을 보여준다. 제안하는 방법을 구현한 프로토타입 시스템은 $1280\times960$ 크기의 차량 영상들을 장당 평균 0.150초의 수행 시간에 처리하였으며, 총 270장의 다양한 노이즈를 가지는 차량 영상들에 대해 $97.03\%$의 성공률을 보였다.

  • PDF

다시점 및 다중클러스터 환경에서 네트워크를 이용한 효율적인 실시간 영상 합성 기법 (An Efficient Real-Time Image Reconstruction Scheme using Network m Multiple View and Multiple Cluster Environments)

  • 유강수;임은천;심춘보
    • 한국정보통신학회논문지
    • /
    • 제13권11호
    • /
    • pp.2251-2259
    • /
    • 2009
  • 네트워크를 기반으로 하나의 클러스터가 4개의 카메라로 구성된 4개의 다중 클러스터로부터 2D 영상을 조합하여 3D 입체 영상을 생성하는 알고리즘 및 시스템을 제안한다. 제안하는 기법은 다중 클러스터 환경에서 동작하고 실시간 대용량의 데이터 처리로 인한 시스템의 부하를 분산시키기 위해 네트워크를 이용한 서버-클라이언트 구조를 가진다. 아울러 성능 향상을 고려해 JPEG 압축과 램 디스크 방식을 적용한다. 4채널 16개의 카메라로부터 입력되는 입력 영상에 대해서 이진화 영상을 구하고, Sobel 및 Prewitt 등의 에지 검출 알고리즘을 적용시킨 후 영상들 간의 시차를 구한 후에 3D 입체 영상을 생성한다. 성능 분석 결과, 클라이언트에서 서버로 전송하는 전송시간은 약 0.05초가 소요되며, 4채널 16개의 카메라로부터 2D 영상을 조합하여 3D 입체 영상을 생성하는 알고리즘에 소요되는 시간은 약 0.84초가 소요된다. 이를 통해 실시간으로 다시점 및 다중 클러스터 환경에서 3D 입체 영상을 생성하는 효율적인 시스템임을 확인할 수 있었다.