• Title/Summary/Keyword: 에너지 기반 근사해석

Search Result 8, Processing Time 0.028 seconds

Evaluation Concept of Progressive Collapse Sensitivity of Steel Moment Frame using Energy-based Approximate Analysis (에너지 기반 근사해석을 이용한 철골모멘트골조의 연쇄붕괴 민감도 평가방법)

  • Noh, Sam-Young;Park, Ki-Hwan;Lee, Sang-Yun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.108-116
    • /
    • 2017
  • In this study, the prototype structure of seismically designed steel moment frame was analyzed statically and dynamically in order to demonstrate the applicability of energy-based approximate analysis with the dynamic effect of sudden column loss in the evaluation of the collapse resistance and a method for assessing the sensitivity to progressive collapse was proposed. For the purpose of comparing the structural behavior of buildings with different structural systems, the sensitivity of the structure to the sudden removal of vertical members can be used as a significant measure. The energy-based approximate analysis prediction for the prototype structure considered in the study showed good agreement with the dynamic analysis result. In the sensitivity evaluation, the structural robustness index that indicates the ability of a structure to resist collapse induced by abnormal loads was used. It was confirmed that the proposed methods can be used conveniently and rationally in progressive collapse analysis and design.

Analytical Study on Effect of Floor Slab for Progressive Collapse Resistant Capacity of Steel Moment Frames (철골모멘트골조의 연쇄붕괴저항성능에 대한 바닥슬래브의 효과에 관한 해석적 연구)

  • Kim, Seonwoong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.1
    • /
    • pp.27-35
    • /
    • 2014
  • In this study, an improved energy-based nonlinear static analysis method are proposed to be used for more accurate evaluation of progressive collapse potential of steel moment frames by reflecting the contribution of a double-span floor slab. To this end, the behavior of the double-span floor slab was first investigated by performing material and geometric nonlinear finite element analysis. A simplified energy-absorbed analytical model by idealizing the deformed shape of the double-span floor slab was developed. It is shown that the proposed model can easily be utilized for modeling the axial tensile force and strain energy response of the double-span floor slab under the column-removal scenario.

Evaluation of Progressive Collapse Resistance of Steel Moment Frame with WUF-B Connection and Composite Slab using Equivalent Energy-based Static Analysis (WUF-B 접합부 및 합성슬래브로 설계된 철골모멘트골조의 에너지 기반 근사해석을 이용한 연쇄붕괴 저항성능 평가)

  • Noh, Sam-Young;Park, Ki-Hwan;Hong, Seong-Cheol;Lee, Sang-Yun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.2
    • /
    • pp.19-28
    • /
    • 2018
  • The progressive collapse resistance performance of a steel structure constructed using the moment frame with the WUF-B connection and the composite slabs was evaluated. GSA 2003 was adapted for the evaluation. Additionally the structural robustness and the sensitivity against the progressive collapse were analyzed. In the numerical analysis, a reduced model comprised of the beam and spring elements for WUF-B connection was adapted. The composite slab was modeled using the composite-shell element. Instead of the time-consuming dynamic analysis for the effect of the sudden column removal, the equivalent energy-based static analysis was effectively applied. The analysis results showed that the structure was the most vulnerable to in the case of the internal column removal, however it satisfied the chord rotation criterion of GSA 2003 due to the contribution of the composite slab which improved the stiffness of structure. In the robustness evaluation, the structural performance showed more than 2.5 times of the requirement according to GSA 2003, and the structural sensitivity analysis indicated the decrease of 33% of the initial structural performance.

Crashworthiness Analysis and Shape Design Optimization of Thin-walled Corrugated Tubes under Axial Impact (축 방향 충격을 받는 박판 파형관의 충돌안전도 해석 및 형상 최적설계)

  • Ahn, Seung Ho;Jung, Hyun Seung;Kim, Jin Sung;Son, Seung Wan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.128-135
    • /
    • 2021
  • Thin-walled tubes have been widely used as energy absorbing devices because they are light and have high energy-absorption efficiency. However, the downside is that conventional thin-walled tubes usually exhibit an excessive initial peak crushing force (IPCF) and a large fluctuation in the load-displacement curve, and thus lack stability as energy absorbing devices. Corrugated tubes were introduced to reduce IPCF and to increase the stability of collision energy-absorbing devices. Since the performance of corrugated tubes is highly influence by geometry, design optimization methods can be utilized to optimize the performance of corrugated tubes. In this paper, we utilize shape design optimization based on an adaptive surrogate model for crashworthiness analysis. The amplitude and wavelength of the corrugation, as well as curvature changes in the features, are the design variables. A morphing methodology is adopted to perform shape design parameterization. Through numerical examples, we compare optimal design results based on the adaptive surrogate model, with optimal results based on conventional surrogate models, and we show that direct optimal design methods produce more efficient results.

An In-silico Simulation Study on Size-dependent Electroelastic Properties of Hexagonal Boron Nitride Nanotubes (인실리코 해석을 통한 단일벽 질화붕소 나노튜브의 크기 변화에 따른 압전탄성 거동 예측연구)

  • Jaewon Lee;Seunghwa Yang
    • Composites Research
    • /
    • v.37 no.2
    • /
    • pp.132-138
    • /
    • 2024
  • In this study, a molecular dynamics simulation study was performed to investigate the size-dependent electroelastic properties of single-walled boron nitride nanotubes(BNNT). To describe the elasticity and polarization of BNNT under mechanical loading, the Tersoff potential model and rigid ion approximation were adopted. For the prediction of piezoelectric constants and Young's modulus of BNNTs, piezoelectric constitutive equations based on the Maxwell's equation were used to calculate the strain-electric displacement and strain-stress relationships. It was found that the piezoelectric constants of BNNTs gradually decreases as the radius of the tubes increases showing a nonnegligible size effect. On the other hand, the elastic constants of the BNNTs showed opposites trends according to the equivalent geometrical assumption of the tubular structures. To establish the structure-property relationships, localized configurational change of the primarily bonded B-N bonded topology was investigated in detail to elucidate the BNNT curvature dependent elasticity.

Capacity Spectrum Analysis using Equivalent SDOF Method and Equivalent Damping Method for RC Wall Structure (철근콘크리트 벽체구조물에 대한 등가단자유도 방법 및 등가 감쇠비 산정방법에 따른 역량스펙트럼해석)

  • Song, Jong-Keol;Jang, Dong-Hui;Kim, Hark-Soo;Chung, Yeong-Hwa
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.2
    • /
    • pp.169-187
    • /
    • 2008
  • Performance-based approaches as an alternative method of the existing force-based approach have gradually become recognized tools for the seismic design and evaluation. The maximum inelastic displacement response using capacity spectrum method (CSM) with elastic response spectrum is estimated from seismic response of equivalent linear system converted from nonlinear system. The purpose of this paper is to evaluate accuracy of capacity spectrum method using the equivalent SDOF methods of 4 types and the equivalent damping methods of 5 types for RC wall structure. In order to evaluate accuracy of capacity spectrum analysis, the shaking table test results for RC wall structures are compared with those by the capacity spectrum analysis. Also, the effect of bilinear capacity curves by two bilinear approximation methods for capacity spectrum analysis is compared.

Design Optimization for Loop Heat Pipe Using Tabu Search (Tabu Search를 이용한 Loop Heat Pipe의 최적설계에 관한 연구)

  • Park, Yong-Jin;Yun, Su-Hwan;Ku, Yo-Cheun;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.8
    • /
    • pp.737-743
    • /
    • 2009
  • Design optimization process and results of Loop Heat Pipe(LHP) using Tabu Search have been presented in this study. An objective of optimization is to reduce a mass of the LHP with satisfying operating temperature of a Lithium Ion battery onboard an aircraft. The battery is assumed to be used as power supply of air borne high energy laser system because of its high specific energy. The analytical models are based on a steady state mathematical model and the design optimization is performed using a Meta Model and Tabu Search. As an optimization results, the Tabu search algorithm guarantees global optimum with small computation time. Due to searching by random numbers, initial value is dominant factor to search global optimum. The optimization process could reduce the mass of the LHP which express the same performance as an published LHP.

Tephra Origin of Goryeri Archaeological Site, Milyang Area, Korea (밀양 고례리 화산 유리물질 기원 해석)

  • 김주용;양동윤;박영철
    • The Korean Journal of Quaternary Research
    • /
    • v.13 no.1
    • /
    • pp.35-43
    • /
    • 1999
  • Goryeri archaeological site is located in the upstream valley of the Danjang River. The basement rocks of the area are composed of the Cretaceous to Palaeogene biotite granite (KbGr), acidic dyke (Kad), Milyang Andesite (Kma) and Jyunggagsan Formation. Among them Milyang Andesite and Jyunggagsan Formation are prevailed in archaeological site and they are composed of reddish brown tuffaceous shale, sandstone and conglomerate, with intercalations of acidic tuffs and lapilli tuffs. The purpose of this research is not only to compare REE pattern of the soil-sedimentary deposits with those of surrounding rocks, but also to identify vitric tephra in the soil-sedimentary deposits derived from the andesite, acidic tuff and lapilii tuff, in order to illucidate the provenance of the vitric tephra. The rare earth element(REE) of the soils and sedimentary deposits results in the same REE pattern with those analyzed from the surrounding basement rocks. This indicates that the soils and sedimentary deposits are originated from the surrounding basement rocks, most probably from the andesite and lapilli tuff. In addition, vitric tephra were identified both in the Quaternary in-situ weathered soils and sedimentary deposits (PMU-13 and PMU-17), and in the weathered surrounding lapilli tuff. These vitric tephra are considered to be different from those of Japanese AT(Aira Tanzawa) -tephra. The latter is predominant with clean, platty, bubble-walled and Y-shaped vitrics, while the former is conspicuous with those shapes of large and diverse size and devitrified, as well as having secondarily bubbled-surfaces reflecting surface weathering. The size of vitric fragments in the Goryeri site is about 300${\mu}{\textrm}{m}$ and large in size in compasion to 150${\mu}{\textrm}{m}$ of Japanese AT-Tephra. The interim results of the research are contradictary to the explanations based on a series of AT-tephra researches carried by Japanese scholar. In short, the vitric materials of the Goryeri archaeological site are most probably originated from the weathering products of the surrounding basement rocks, and are different from the AT-tephra in their size, shape and devitrification properties. Thus it is highly recommended to have a further comprehensive research which is more emphasized the magmatic genesis of these vitric tephra in addition to the external shape and morphology.

  • PDF