• Title/Summary/Keyword: 에너지 공간

Search Result 1,727, Processing Time 0.025 seconds

Development of Smart Mining Technology Level Diagnostics and Assessment Model for Mining Sites (광산 현장의 스마트 마이닝 기술 수준 진단평가 모델 개발)

  • Park, Sebeom;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.32 no.1
    • /
    • pp.78-92
    • /
    • 2022
  • In this study, we proposed a diagnostics and assessment model for mining sites that can evaluate the smart mining technology level in a systematic and structured way. For this, the maturity of the smart mining was defined, and detailed assessment items of the diagnostics and assessment model for smart mining were derived by considering the smart factory diagnostics and assessment model (KS X 9001-3) used in the manufacturing industry. While maintaining the existing system, the existing 46 detailed assessment items were modified to be suitable for mining. As a result, a total of 29 detailed assessment items were derived in the areas of promotion strategy, process, information system and automation, and performance. Based on this, a questionnaire was designed to diagnose the level of smart mining technology, and assessment was performed by applying it to domestic iron mines. The level of smart mining technology in the study area was found to be level 2, and it could be inferred that it was about 40% lower than the average smart level of the general manufacturing industry. In addition, by using the developed model, it was possible to recognize the weak points of the mine at each stage of the introduction, operation, and advancement of smart mining, and to suggest investment and improvement directions.

A Numerical Study on Ventilation Characteristics of Factors Affecting Leakages in Hydrogen Ventilation (누출 수소 환기에 영향을 미치는 요인별 환기 특성에 관한 수치해석적 연구)

  • Lee, Chang-Yong;Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.610-619
    • /
    • 2022
  • Hydrogen is emerging as an alternative fuel for eco-friendly ships because it reacts with oxygen to produce electrical energy and only water as a by-product. However, unlike regular fossil fuels, hydrogen has a material with a high risk of explosion due to its low ignition point and high flammability range. In order to safely use hydrogen in ships, it is an essential task to study the flow characteristics of hydrogen leakage and diffusion need to be studied. In this study, a numerical analysis was performed on the effect of leakage, ventilation, etc. on ventilation performance when hydrogen leaks in an enclosed space such as inside a ship. ANSYS CFX ver 18.1, a commercial CFD software, was used for numerical analysis. The leakage rate was changed to 1 q, 2 q, and 3 q at 1 q = 1 g/s, the ventilation rate was changed to 1 Q, 2 Q and 3 Q at 1 Q = 0.91 m/s, and the ventilation method was changed to type I, type II, type III to analyze the ventilation performance was analyzed. As the amount of leakage increased from 1 q to 3 q, the HMF in the storage room was about 2.4 to 3.0 times higher. Furthermore, the amount of ventilation to reduce the risk of explosion should be at least 2 Q, and it was established that type III was the most suitable method for the formation of negative pressure inside the hydrogen tank storage room.

Study on the ICT Device Safety System Application Examples in Mines (광산에서의 ICT 장비 활용 및 안전시스템 운용 사례 연구)

  • Kim, Seung-Jun;Ko, Young-Hun;Kim, Jung-Gyu;Seo, Man-Keun;Kim, Jong-Gwan
    • Tunnel and Underground Space
    • /
    • v.32 no.3
    • /
    • pp.194-202
    • /
    • 2022
  • An increased number of cases have occurred in applying ICT technology in the resource development field due to factors such as safety, eco-friendliness, and low cost since the 2000s. In Korea, the 2nd mining master plan specified the significance of converging the full cycle of mining and ICT, while the 3rd mining master plan highlighted ICT and smart mining such as supporting the supply of an ICT mining device and introducing demonstrational smart mining. This study introduces the application of an ICT device and safety system operation in the Jangseong underground mine of Korea Cement Co., Ltd. Currently, Jangseong mine combines two different kinds of 3D equipment including the handheld 3D scanner and multi-station that provides both the measurement and 3D scanning to perform a 3D measurement of the mine. Taken from the 3D measurement of the mine, it is now possible to identify any hazardous areas and abnormalities in different directions and analyze the safety of the crown pillar between two stopes in different level. Besides, the real-time location tracking and communications system have established highly efficient rescue and evacuation plans to effectively deal with any accidents in the mine.

A Study on the Development of H2 Fuel Cell Education Platform: Meta-Fuelcell (연료전지 교육 플랫폼 Meta-Fuelcell 개발에 관한 연구)

  • Duong, Thuy Trang;Gwak, Kyung-Min;Shin, Hyun-Jun;Rho, Young-J.
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.29-35
    • /
    • 2022
  • This paper proposes a fuel cell education framework installed on a Metaverse environment, which is to reduce the burden of education costs and improve the effect of education or learning. This Meta-Fuel cell platform utilizes the Unity 3D Web and enables not only theoretical education but also hands-on training. The platform was designed and developed to accommodate a variety of unit education contents, such as ppt documents, videos, etc. The platform, therdore, integrates ppt and video demonstrations for theoretical education, as well as software content "STACK-Up" for hands-on training. Theoretical education section provides specialized liberal arts knowledge on hydrogen, including renewable energy, hydrogen economy, and fuel cells. The software "STACK-Up" provides a hands-on practice on assembling the stack parts. Stack is the very core component of fuel cells. The Meta-Fuelcell platform improves the limitations of face-to-face education. It provides educators with the opportunities of non-face-to-face education without restrictions such as educational place, time, and occupancy. On the other hand, learners can choose educational themes, order, etc. It provides educators and learners with interesting experiences to be active in the metaverse space. This platform is being applied experimentally to a education project which is to develop advanced manpower in the fuel cell industry. Its improvement is in progress.

A Study on Automatic Solar Tracking Design of Rooftop Solar Power Generation System and Linkage with Education Curriculum (지붕 설치형 태양광 발전 시스템의 태양 위치 추적 구조물 설계 및 설치 실증 기법의 교육과정 연계)

  • Woo, Deok Gun;Seo, Choon Won;Lee, Hyo-Jai
    • Journal of Practical Engineering Education
    • /
    • v.14 no.2
    • /
    • pp.387-392
    • /
    • 2022
  • To participate in global carbon neutrality, the Korean government is also planning to carry out zero-energy building certification for all buildings by 2030 through the enforcement decree of the 'Green Building Support Act'. Accordingly, the government is providing various projects related to solar power generation, which are relatively close to life. In particular, roof-mounted photovoltaic power generation systems are attracting attention in terms of using unused space to produce energy without destroying the environment, but low power generation efficiency compared to other photovoltaic power generation facilities is pointed out as a disadvantage. Therefore, in this paper, to solve this problem, we propose an efficient solar panel angle variable system through research on the solar panel structure for single-axial solar tracking, and also consider the application environment of the roof-mounted solar power generation system. Suggests measures to prevent damage and secondary damage. In addition, it is judged that it is possible to control the solar panel based on ICT convergence and configure the accident prediction safety system to link the project-based education program.

Adsorption Characteristics of Hydrogen in Regular Single-Walled Carbon Nanotube Arrays at Low Temperature (저온에서 규칙적인 단일벽 탄소나노튜브 배열의 수소 흡착 특성)

  • Yang Gon Seo
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.217-226
    • /
    • 2023
  • The amount of hydrogen adsorbed in arrays of single walled carbon nanotubes (SWNTs) was studied as a function of nanotube diameter and distance between the nearest-neighbor nanotubes on square arrangements using a grand canonical Monte Carlo simulation. The influence of the geometry of a triangle array with the same diameters and distances was also studied. Hydrogen-carbon and hydrogen-hydrogen interactions were modeled with Lennard-Jones potentials for short range interactions and electrostatic interactions were added for hydrogen-hydrogen pairs to consider quantum contributions at low temperatures. At 194.5 K, Type I isotherms for large-diameter SWNTs and Type IV isotherms without hysteresis between adsorption and desorption processes for wider tube separations were observed. At 200 bars, the gravimetric hydrogen storage capacity of the SWNTs was reached or exceeded the US Department of Energy (DOE) target, but the volumetric capacity was about 70% of the DOE target. At 77 K, a two-step adsorption was observed, corresponding to a monolayer formation step followed by a condensation step. Hydrogen was adsorbed first to the inner surface of the nanotubes, then to the outer surface, intratubular space and the interstitial channels between the nanotube bundles. The simulation indicated that SWNTs of various diameters and distances in a wide range of configurations exceeded the DOE gravimetric and volumetric targets at under 1 bar.

EU Enlargement and economic environmental change of Russia and Eastern Europe - From asymmetry and subsidiarity paradigm in industrial cooperative paradigm (EU의 동방확대에 따른 동유럽·러시아간의 경제 환경 변화 - 비대칭성 및 보완성 패러다임에서 산업협력 패러다임으로)

  • Kim, Sang Won
    • Journal of International Area Studies (JIAS)
    • /
    • v.13 no.1
    • /
    • pp.135-156
    • /
    • 2009
  • The two waves of EU enlargement in 2004 and 2007, have been milestones of European integration. While research has been conducted into the impact of these events on both the European and the global economies,1 there have been few attempts to assess the effects of EU enlargement and the introduction of the euro on countries such as Russia, which neighbour the EU but currently have no perspective of accession. This paper aims to provide an assessment of the effects that EU enlargement and the introduction of the euro have had on Russia, the largest country neighbouring the EU. In particular, it focuses on trade and investment links between the EU and Russia, as well as the use of the energy by Russian residents and authorities. Economic links between Russia and the EU are found to have strengthened considerably in the areas of trade, investment and other financial flows in recent years. Strong growth, particularly in Russia, as well as the high price of oil and gas, Russia's major export items, has facilitated this expansion of trade and finance. Moreover, available data do not suggest that EU enlargement has had a negative impact on Russia in terms of trade or investment diversion. Thus, the strategic partnership between Russia and the EU has been increasingly underpinned by an expansion of cross-border economic activities. Thus, the paper contributes to two broad strands of literature on this subject, namely the impact of regional trade and economic arrangements on non-member countries and the international role of currencies.

Rock Bolt Integrity Assessment in Time-Frequency Domain : In-situ Application at Hard Rock Site (유도파를 이용한 시간-주파수 영역 해석을 통한 록볼트 건전도 실험의 경암지반 현장 적용성 평가)

  • Lee, In-Mo;Han, Shin-In;Min, Bok-Ki;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.12
    • /
    • pp.5-12
    • /
    • 2009
  • As rock bolts become one of the main support systems in tunnels and underground structures, the integrity of the rock bolts affects the safety of these structures. The purpose of this study is the evaluation of rock bolt integrity using wavelet transforms of the guided ultrasonic waves by using transmission test in the field. After several rock bolts with various defect ratios are embedded into a large scale concrete block and rock mass, guided waves are generated by a piezo disk element and measured by an acoustic emission (AE) sensor. The captured signals are analyzed in the time-frequency domain using the wavelet transform based on a Gabor wavelet. Peak values in the time-frequency domain represent the interval of travel time of each echo. The energy velocities of the guided waves increase with an increase in the defect ratio. The suitable curing time for the evergy velocity analysis is proposed by the laboratory test, and in-situ tests are performed in two tunnelling sites to verify the applicability of rock bolt integrity tests performed after proposed curing time. This study proves that time-frequency domain analysis is an effective tool for the evaluation of the rock bolt integrity.

Prediction of Soil Moisture using Hydrometeorological Data in Selmacheon (수문기상자료를 이용한 설마천의 토양수분 예측)

  • Joo, Je Young;Choi, Minha;Jung, Sung Won;Lee, Seung Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5B
    • /
    • pp.437-444
    • /
    • 2010
  • Soil moisture has been recognized as the essential parameter when understanding the complicated relationship between land surface and atmosphere in water and energy recycling system. It has been generally known that it is related with the temperature, wind, evaporation dependent on soil properties, transpiration due to vegetations and other constituents. There is, however, little research concerned about the relationship between soil moisture and these constitutes, thus it is needed to investigate it in detail. We estimated the soil moisture and then compared with field data using the hydrometerological data such as atmospheric temperature, specific humidity, and wind obtained from the Flux tower in Selmacheon, Korea. In the winter season, subterranean temperature showed highly positive correlation with soil moisture while it was negatively correlated from the spring to the fall. Estimation of seasonal soil moisture was compared with field measurements with the correlation of determination, R=0.82, 0.81, 0.82, and 0.96 for spring, summer, fall, and winter, respectively. Comprehensive relationship from this study can supply useful information about the downscaling of soil moisture with relatively large spatial resolutions, and will help to deepen the understanding of the water and energy recycling on the earth's surface.

Application of Multiple Linear Regression Analysis and Tree-Based Machine Learning Techniques for Cutter Life Index(CLI) Prediction (커터수명지수 예측을 위한 다중선형회귀분석과 트리 기반 머신러닝 기법 적용)

  • Ju-Pyo Hong;Tae Young Ko
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.594-609
    • /
    • 2023
  • TBM (Tunnel Boring Machine) method is gaining popularity in urban and underwater tunneling projects due to its ability to ensure excavation face stability and minimize environmental impact. Among the prominent models for predicting disc cutter life, the NTNU model uses the Cutter Life Index(CLI) as a key parameter, but the complexity of testing procedures and rarity of equipment make measurement challenging. In this study, CLI was predicted using multiple linear regression analysis and tree-based machine learning techniques, utilizing rock properties. Through literature review, a database including rock uniaxial compressive strength, Brazilian tensile strength, equivalent quartz content, and Cerchar abrasivity index was built, and derived variables were added. The multiple linear regression analysis selected input variables based on statistical significance and multicollinearity, while the machine learning prediction model chose variables based on their importance. Dividing the data into 80% for training and 20% for testing, a comparative analysis of the predictive performance was conducted, and XGBoost was identified as the optimal model. The validity of the multiple linear regression and XGBoost models derived in this study was confirmed by comparing their predictive performance with prior research.