• Title/Summary/Keyword: 에너지효율성

Search Result 3,527, Processing Time 0.039 seconds

Policy Implication on UK's Net Zero 2030 in Water Industry (영국 물산업 분야 탄소중립 방안에 대한 정책적 시사점)

  • Suh, Jin Suhk;Kim, Shang Moon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.46-46
    • /
    • 2021
  • 국제사회는 1992년 기후변화협약 체결 이후 지구온도 상승을 2℃이하로 억제하는 등 기후변화 문제를 해결하기 위해 노력하고 있다. 그러나 1997년 선진국(38개국) 중심으로 2020년까지 탄소감축(교토의정서)을 선언하였음에도 불구하고, 미국, 중국 등의 감축의무 미참여로 인해 기후변화대응에 대한 한계를 노출한 바 있다. 그 이후 COP21(2015년)에서 모든 국가에 감축의무를 부여하는 신(新)기후체제를 출범함으로써 선진국뿐만 아니라 개발도상국도 2020년부터 탄소감축의무를 부담하게 되었다. 영국은 기후변화위원회의 권고에 따라 탄소중립경제(Net-Zero Economy) 실현을 위해 국가적 탄소배출 목표를 발표(2019년)하고 온실가스 배출 'Zero'를 기후변화법에 명시하여 모든 산업 인프라 및 환경에 적용시키려 한다. 전 세계에서 최초로 영국의 물산업 분야는 'Net Zero 2030 Routemap'을 발표하여 물산업분야의 탄소중립 실현을 위해 다양한 정책적 로드맵과 실행방안(시나리오)을 수립하였다. 이러한 실행방안은 국가정책에 부합하고 자국내 물기업의 탄소저감 실행계획의 수립을 지원하는데 그 목적이 있다. 구체적인 실행방안은 탄소중립 달성을 위해 비용, 효과, 기술수준 및 기간 등을 고려하여, ①수요주도형, ②기술주도형, ③자연친화주도형, 그리고 ④복합형으로 제시하고 있다. 실행시나리오에 따르면, 수요주도형은 상하수도 분야 수요관리 및 기술, 설비의 효율화를 통한 배출 저감 방안으로 2018~19년 기준, 총배출량 2.41MtCO2e에서 2030년까지 0.54MtCO2e으로 약 77%의 감소효과를 기대하고 있다. 기술주도형의 경우, 심각한 탄소배출 분야의 기술개발 및 혁신을 통해 배출량을 최소화하는 시나리오이며, 총배출량(2.41MtCO2e)을 0.10MtCO2e(약 96%)까지 감소시키기 위한 방안이다. 자연친화주도형은 물기업의 자산 및 그 외 지역에 자연친화적 환경조성을 통한 탄소상쇄방안을 중심으로 총배출량을 0.88MtCO2e(약 63%)까지 저감하는 효과를 나타낸다. 마지막으로 복합협은 시나리오별 실효성과 적용시기를 고려할 때 가장 효과적인 방안으로 약 74%의 저감효과를 나타내지만, 시기적절성, 효과성에서, 가장 최적의 방안으로 제시되고 있다. 본 연구는 이러한 영국 물산업 분야의 탄소중립 정책과 실행방안 분석하고 그 시사점을 제시함으로써 국내 물산업 분야의 탄소중립을 위한 구체적 실행계획 수립에 이바지하고자 한다. 물산업 분야의 탄소중립은 기존 물산업 가치사슬 변화 등 물산업 생태계 전반의 변화를 초래할 것이며, 이러한 변화는 국내 물산업의 자본·운영시장의 비용증가에 대한 도전과 신재생에너지 기술 등 탄소 중립 기술 습득 및 새로운 일자리 창출 등 신(新)시장체계에 대한 기회가 동시에 상존한다.

  • PDF

Understanding and Trends of Roll-to-Roll Operation (롤투롤 공정의 이해 및 동향)

  • Yeong-Woo Ha;Gi-Hwan Kim;Dong-Chan Lim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.36-42
    • /
    • 2024
  • Roll-to-roll processing holds an integral position within the manufacturing landscape, and its significance reverberates across numerous industries. This versatile technology platform encompasses a diverse array of process methods and accommodates a wide spectrum of material categories, making it a cornerstone of modern production. Within this expansive domain, two commonly employed coating techniques, namely the slot die and gravure coating methods, have earned their prominence for their precision and efficiency in delivering flawless coatings. Additionally, the realm of drying processes relies heavily on thermal drying, infrared (IR) drying, and ultraviolet (UV) drying methods to expedite the transformation of materials from their liquid or semi-liquid states to solid, ready-to-use products. The undeniable importance of roll-to-roll processing lies in its ability to streamline manufacturing processes, reduce costs, and enhance product quality. This article embarks on a comprehensive journey to fathom the depth of this importance by delving into the intricacies of these common roll-to-roll process methods. Through rigorous research and meticulous data collection, we aim to shed light on the pivotal role these techniques play in shaping various industries and advancing the world of manufacturing. By understanding their significance, we can harness the full potential of roll-to-roll processing and pave the way for innovation and excellence in production.

Performance of Passive UHF RFID System in Impulsive Noise Channel Based on Statistical Modeling (통계적 모델링 기반의 임펄스 잡음 채널에서 수동형 UHF RFID 시스템의 성능)

  • Jae-sung Roh
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.835-840
    • /
    • 2023
  • RFID(Radio Frequency Identification) systems are attracting attention as a key component of Internet of Things technology due to the cost and energy efficiency of application services. In order to use RFID technology in the IoT application service field, it is necessary to be able to store and manage various information for a long period of time as well as simple recognition between the reader and tag of the RFID system. And in order to read and write information to tags, a performance improvement technology that is strong and reliable in poor wireless channels is needed. In particular, in the UHF(Ultra High Frequency) RFID system, since multiple tags communicate passively in a crowded environment, it is essential to improve the recognition rate and transmission speed of individual tags. In this paper, Middleton's Class A impulsive noise model was selected to analyze the performance of the RFID system in an impulsive noise environment, and FM0 encoding and Miller encoding were applied to the tag to analyze the error rate performance of the RFID system. As a result of analyzing the performance of the RFID system in Middleton's Class A impulsive noise channel, it was found that the larger the Gaussian noise to impulsive noise power ratio and the impulsive noise index, the more similar the characteristics to the Gaussian noise channel.

The Study of Establishing the Multi-pass Eurasian Railroads (유라시아 철도의 다중경로 구축에 관한 연구)

  • Hahm, Beom-Hee;Huh, Nam-Kyun;Hurr, Hee-Young
    • Korean Business Review
    • /
    • v.21 no.2
    • /
    • pp.137-170
    • /
    • 2008
  • This study is presenting the logistics strategy in the international logistics markets which makes competition and corporation among north-east Asian countries to establishing the multi-pass Eurasian railroads. The countries located in north-east area of Eurasia like China, Japan, Russia and Korea are paying higher costs and disutility to the transportations and communications due to repeated conflicts and confrontations causes from the politic problems. They are being used surface transportation for most of all logistics between Europe and Asia except special merchandises because of characteristic of cargo to be air, the Silk Road remains vestige only which was main logistic passage to this area since BC. So far the Trans-Siberian Railway is being used by Russia mostly as north of Eurasian transport because of difficulties of service. The Trans-China Railway built in 1992 is not accomplishing as a international logistic passages. It is expected to take a long lead time because of characteristic of resource development and poor logistic infrastructure to the countries like Uzbekistan, double landlocked country, Mongolia and Azerbaijan, the countries do not be adjacent to the sea, even they have great economic jump-up plans through the development of their own resources. The Shanghai Cooperation Organization(SCO) start to sail officially in 2001 is constructed with China, Russia, Tadzhikistan, Kyrgyzstan, Kazakhstan and Uzbekistan as regular members of 6 countries and Mongolia, India, Pakistan, Afghanistan and Iran as observers 5 countries. It is started as a military alliance to protect terror, but now, it is expended to cooperate with the traffic, transportation, trade and share of energies. The Russia is doing their best to activate TSR as a government target to developnorth area equivalently, and economic develop of far-east Siberia. And also it is agreed provisionally to improve and repair of rail road between Nahjin and Hassan to connect TSR and TKR( Trans-Korea Railroad) by Russia, North Korea and South Korea with Russian's aggressive efforts. The development plan of this area is over lapped with GTI(Greater Tumen Initiative) promoted by UNDP, and is a cooperated project by 5 countries of South Korea, Mongolia, China, Russia and North Korea, subject to review the appropriation of energy, tour, environment, rail road connection between Mongolia and China and establishing a ferry route to north-east Asia. It is Japanese situation to pay attention to Russia and China even they have been supplying large-scope of infrastructure in Mongol area without any charges, target to get East Asia Main Rail Road to connect Mongolia and Zalubino of Russia. In case of the program for the Denuclearization of North Korea is not creeping, it will be accelerated to connect the TKR and TSR, TKR and TCR by somehow attending United States, including developing program promoted by UN ESCAP. As the result, Korean peninsular will continue the central role of competition and cooperation as in the past, now and future of north-east Asia, as of geographical-economics and geographical-politics whether it is requested or not wanted by neighbor countries.

  • PDF

Current and Future Operation of Menu Management in the School Foodservices of Chungbuk (1) - Menu Planning - (충북지역 학교급식 영양(교)사의 식단관리 운영실태 및 개선방안(1) - 식단계획 -)

  • Ahn, Yoon-Ju;Lee, Young-Eun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.8
    • /
    • pp.1118-1133
    • /
    • 2012
  • This research aimed to suggest an efficient improvement plan for school food services by investigating the operating situation and recognition of menu management in school food services for school food service dietitians (and nutrition teachers) in Chungbuk. A total of 328 questionnaires were distributed to school food service dietitians (and nutrition teachers) in Chungbuk by e-mail in September, 2010. A total of 265 questionnaires (80.8%) were used for the analysis. The highest allocation of nutrients and calories per day in school food services was 1:1.5:1.5 (breakfast : lunch : dinner) (38.5%). The reasoning for applying a flexible allocation of nutrients and calories per day was 'considering the ratio of students who do not eat breakfast' (59.2%). And the way to apply the flexible allocation for nutrients and calories per day was 'by agreement from the school operating committee in arbitrary data without situation surveys' (86 respondents, 49.4%), and 'by agreement from the school operating committee in analysis data through situation surveys' (80 respondents, 46.0%). The operational method of standardized recipes was 'cooking management site of national education information systems' (87.5%) and the items included in standardized recipes were menu name, food material name, portion size, cooking method, nutrition analysis, and critical control point in HACCP. The main reason for not utilizing all items of a cooking management site of the national education information system was 'no big trouble in menu management even though it is used partly (29.1%). In addition, the highest use of standardized recipe was for 'maintaining consistency of food production quantity' (74.0%).

Application of PCM Technology to Concrete II : Effects of SSMA(Sulfonated Styrene-Maleic Anhydride) on the Properties of the 1-Dodecanol Micro-Capsule (PCM 기술의 콘크리트 적용 II : 계면중합법에 의한 1-도데카놀 마이크로 캡슐에 있어서 계면활성제로 사용된 SSMA의 표면활성도가 마이크로 캡슐의 특성에 미치는 영향)

  • Shin, Se-Soon;Jung, Jae-Yun;Lim, Myung-Kwan;Choi, Dong-Uk;Kim, Young-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.17-25
    • /
    • 2013
  • Thermal storage technology used for indoor heating and cooling to maintain a constant temperature for a long period of time has an advantage of raising energy use efficiency. This, the phase changing material, which utilizes heat storage properties of the substances, capsulizes substances that melt at a constant temperature. This is applied to construction materials to block or save energy due to heat storage and heat protection during the process in which substances melt or freeze according to the indoor or outdoor temperature. The micro-encapsulation method is used to create thermal storage from phase changing material. This method can be broadly classified in 3 ways: chemical method, physical and chemical method and physical and mechanical method. In the physical and chemical method, a wet process using the micro-encapsulation process utilized. This process emulsifies the core material in a solvent then coats the monomer polymer on the wall of the emulsion to harden it. In this process, a surfactant is utilized to enhance the performance of the emulsion of the core material and the coating of the wall monomer. The performance of the micro-encapsulation, especially the coating thickness of the wall material and the uniformity of the coating, is largely dependent on the characteristics of the surfactant. This research compares the performance of the micro-capsules and heat storage for product according to molecular mass and concentration of the surfactant, SSMA (sulfonated styrene-maleic anhydride), when it comes to micro-encapsulation through interfacial polymerization, in which Dodecan-1 is transformed to melamin resin, a heat storage material using phase changing properties. In addition, the thickness of the micro-encapsulation wall material and residual melamine were reduced by adjusting the concentration of melamin resin microcapsules.

A Case Study on the Exogenous Factors affecting Extra-large Egg Production in a Layer Farm in Korea (산란계 사육농장 특란 생산에 미치는 외부 요인 분석을 위한 사례 연구)

  • Lee, Hyun-Chang;Jang, Woo-Whan
    • Korean Journal of Poultry Science
    • /
    • v.41 no.2
    • /
    • pp.99-104
    • /
    • 2014
  • The objective of this study is to analyze the production of extra-large egg and assess the impacts of exogenous factors in feeding the layer chicken. The main results of this study are as follows; First, feeding rations on the basics of statistics, internal maximum and minimum temperature and, the age at first egg affect the production of extra-large egg. Second, implicating the standardized coefficients from the conclusion of regression model estimating suggest that the amount of feed has the greatest impact on production followed by the age at first egg. Third, by using the elasticity of output and the volatility in the production, the result suggest that among the independent variable factors in the external volatility, the biggest one goes to feed ration, and the age at first egg follows. In order to control the production volatility in the extra-large egg production of the farms, it is necessary to manage an efficient feeding based on feed ration, age at first egg and, the maximum and minimum temperature inside the farm. Taken together, the results demonstrates that it should be concentrated by controlling the exogenous factors affecting extra large egg production and the management system construct, to increase extra-large egg production and the income of farmers at the same time.

Performance and Economic Analysis of Domestic Supercritical Coal-Fired Power Plant with Post-Combustion CO2 Capture Process (국내 초임계 석탄화력발전소에 연소 후 CO2 포집공정 설치 시 성능 및 경제성 평가)

  • Lee, Ji-Hyun;Kwak, No-Sang;Lee, In-Young;Jang, Kyung-Ryoung;Shim, Jae-Goo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.365-370
    • /
    • 2012
  • In this study, Economic analysis of supercritical coal-fired power plant with $CO_2$ capture process was performed. For this purpose, chemical absorption method using amine solvent, which is commercially available and most suitable for existing thermal power plant, was studied. For the evaluation of the economic analysis of coal-fired power plant with post-combustion $CO_2$ capture process in Korea, energy penalty after $CO_2$ capture was calculated using the power equivalent factor suggested by Bolland et al. And the overnight cost of power plant (or cost of plant construction) and the operation cost reported by the IEA (International Energy Agency) were used. Based on chemical absorption method using a amine solvent and 3.31 GJ/$tonCO_2$ as a regeneration energy in the stripper, the net power efficiency was reduced from 41.0% (without $CO_2$ capture) to 31.6% (with $CO_2$ capture) and the levelized cost of electricity was increased from 45.5 USD/MWh (Reference case, without $CO_2$ capture) to 73.9 USD/MWh (With $CO_2$ capture) and the cost of $CO_2$ avoided was estimated as 41.3 USD/$tonCO_2$.

Transition Metal Dichalcogenide Nanocatalyst for Solar-Driven Photoelectrochemical Water Splitting (전이금속 디칼코제나이드 나노촉매를 이용한 태양광 흡수 광화학적 물분해 연구)

  • Yoo, Jisun;Cha, Eunhee;Park, Jeunghee;Lim, Soo A
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.2
    • /
    • pp.25-38
    • /
    • 2020
  • Photoelectrochemical water splitting has been considered as the most promising technology for generating hydrogen energy. Transition metal dichalcogenide (TMD) compounds have currently attracted tremendous attention due to their outstanding ability towards the catalytic water-splitting hydrogen evolution reaction (HER). Herein, we report the synthesis method of various transition metal dichalcogenide including MoS2, MoSe2, WS2, and WSe2 nanosheets as excellent catalysts for solar-driven photoelectrochemical (PEC) hydrogen evolution. Photocathodes were fabricated by growing the nanosheets directly onto Si nanowire (NW) arrays, with a thickness of 20 nm. The metal ion layers were formed by soaking the metal chloride ethanol solution and subsequent sulfurization or selenization produced the transition metal chalcogenide. They all exhibit excellent PEC performance in 0.5 M H2SO4; the photocurrent reaches to 20 mA cm-2 (at 0 V vs. RHE) and the onset potential is 0.2 V under AM1.5 condition. The quantum efficiency of hydrogen generation is avg. 90%. The stability of MoS2 and MoSe2 is 90% for 3h, which is higher than that (80%) of WS2 and WSe2. Detailed structure analysis using X-ray photoelectron spectroscopy for before/after HER reveals that the Si-WS2 and Si-WSe2 experience more oxidation of Si NWs than Si-MoS2 and Si-MoSe2. This can be explained by the less protection of Si NW surface by their flake shape morphology. The high catalytic activity of TMDs should be the main cause of this enhanced PEC performance, promising efficient water-splitting Si-based PEC cells.

Nondestructive Evaluation and Microfailure Mechanisms of Single Fibers/Brittle Cement Matrix Composites using Electro-Micromechanical Technique and Acoustic Emission (Electro-Micromechanical 시험법과 Acoustic Emission을 이용한 단섬유/시멘트 복합재료의 미세파괴 메커니즘과 비파괴적 평가)

  • 박종만;이상일;김진원;윤동진
    • Composites Research
    • /
    • v.14 no.3
    • /
    • pp.18-31
    • /
    • 2001
  • Interfacial and microfailure properties of the modified steel, carbon and glass fibers/cement composites were investigated using electro-pullout test under tensile and compressive tests with acoustic emission (AE). The hand-sanded steel composite exhibited higher interfacial shear strength (IFSS) than the untreated and even neoalkoxy zirconate (Zr) treated steel fiber composites. This might be due to the enhanced mechanical interlocking, compared to possible hydrogen or covalent bonds. During curing process, the contact resistivity decreased rapidly at the initial stage and then showed a level-off. Comparing to the untreated case, the contact resistivity of either Zr-treated or hand-sanded steel fiber composites increased to the infinity at latter stage. The number of AE signals of hand-sanded steel fiber composite was much more than those of the untreated and Zr-treated cases due to many interlayer failure signals. AE waveforms for pullout and frictional signals of the hand-sanded composite are larger than those of the untreated case. For dual matrix composite (DMC), AE energy and waveform under compressive loading were much higher and larger than those under tensile loading, due to brittle but well-enduring ceramic nature against compressive stress. Vertical multicrack exhibits fur glass fiber composite under tensile test, whereas buckling failure appeared under compressive loading. Electro-micromechanical technique with AE can be used as an efficient nondestructive (NDT) method to evaluate the interfacial and microfailure mechanisms for conductive fibers/brittle and nontransparent cement composites.

  • PDF