• Title/Summary/Keyword: 에너지예측

Search Result 2,628, Processing Time 0.029 seconds

A Study on Evaluation of Slope Stability and Range of Rockfall Hazard of Daljeon-ri Columnar Joint in Pohang, Korea (천연기념물 제415호 포항 달전리 주상절리의 사면안정성 평가 및 낙석 위험 범위 설정)

  • Kim, Jae Hwan;Kang, Mu Hwan;Kong, Dal-Yong;Jwa, Yong-Joo
    • Journal of Conservation Science
    • /
    • v.37 no.5
    • /
    • pp.505-515
    • /
    • 2021
  • In this study, we evaluated the slope stability of the Pohang Daljeon-ri columnar joint (Natural Monuments # 415) and calculated the maximum energy, jumping height and moving distance of rockfalls using a simulation. Based on the results, we established the range of rockfall risk. The slopes of the Pohang Daljeon-ri columnar joint have dip directions of 93.79°, 131.99°, 165.54° and 259.84° from left (SW) to right (NE). Furthermore, they have a fan-like shape. The Pohang Daljeon-ri columnar joints are divided into four sections depending on the dip direction. The measurement results of the discontinuous face show that zone 1 is 125, zone 2 is 261, zone 3 is 262, zone 4 is 43. The results of slope stability analyses for each section using a stereographic projection method correspond to the range of planar and toppling failure. Although it is difficult to diagnose the type of failure, risk evaluation of currently falling rocks requires further focus. The maximum movement distance of a rockfall in the simulation was approximately 66 m and the rockfall risk range was the entire area under slope. In addition, it is difficult to forecast where a rock will fall as it rolls in various directions due to topographic factors. Thus, the installation of measures to prevent falling is suggested to secure the stability based on the results of the rockfall simulations and its probabilistic analysis.

The Risk Assessment of Carbon Monoxide Poisoning by Gas Boiler Exhaust System and Development of Fundamental Preventive Technology (가스보일러 CO중독 위험성 예측 및 근원적 예방기술 개발)

  • Park, Chan Il;Yoo, Kee-Youn
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.3
    • /
    • pp.27-38
    • /
    • 2021
  • We devised the system to automatically shutdown the boiler and to fundamentally block the harmful gases, including carbon monoxide, into the indoor when the exhaust system swerves: (1) The discharge pressure of the exhaust gas decreases when the exhaust pipe is disconnected. The monitoring system of the exhaust pipe is implemented by measuring the output voltage of APS(Air Pressure Sensor) installed to control the amount of combustion air. (2) The operating software was modified so that when the system recognizes the fault condition of a flue pipe, the boiler control unit displays the fault status on the indoor regulator while shutting down the boiler. In accordance with the ventilation facility standards in the "Rules for Building Equipment Standards" by the Ministry of Land, Infrastructure and Transport, experiments were conducted to ventilate indoor air. When carbon monoxide leaked in worst-case scenario, it was possible to prevent poisoning accidents. However, since 2013, the number of indoor air exchange times has been mitigated from 0.7 to 0.5 times per hour. We observed the concentration exceeding TWA 30 ppm occasionally and thus recommend to reinforce this criterion. In conclusion, if the flue pipe fault detection and the indoor air ventilation system are introduced, carbon monoxide poisoning accidents are expected to decrease significantly. Also when the manufacturing and inspection steps, the correct installation and repair are supplemented with the user's attention in missing flue, it will be served to prevent human casualties from carbon monoxide poisoning.

A Study on the Connective Validity of Technology Maturity and Industry for Core Technologies based on 4th Industrial Revolution (4차 산업혁명 기반 핵심기술에 대한 기술성숙도와 산업과 연계 타당성 연구)

  • Cho, Han-Jin;Jeong, Kyuman
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.3
    • /
    • pp.49-57
    • /
    • 2019
  • The core technology development of the Fourth Industrial Revolution is linked to the development of other core technologies, which will change the industrial structure in the future and create a new smart business model. In this paper, tried to analyze the technology maturity level and analyze the technology maturity. To do this, used technology trend information to investigate and integrate the market, policy, etc. Of core technology of the 4th Industrial Revolution to achieve a comprehensive maturity level. Because technology maturity measures are scored by technology developers, prejudices may be acted upon according to a person's tendency, which may be a subjective evaluation. It is also a measure of the maturity of individual technologies, and thus is not suitable for evaluating the overall system integration perspective. However, it is possible to evaluate the maturity before integrating the core element technologies constituting the whole system and to use it as a means to compare the effect of the whole system and its feasibility and play an important role in the planning of technology development.

Modeling of Wet Flue Gas Desulfurization Process for Utilization of Low-Grade Limestone (저품위 석회석 활용을 위한 습식 배연탈황 공정 모델링 연구)

  • Lim, Jonghun;Choi, Yeongryeol;Kim, Geonyeol;Song, Hojun;Kim, Junghwan
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.743-748
    • /
    • 2019
  • This study focuses on the simulation of wet flue gas desulfurization process for improving the production of gypsum by the utilization of low-grade limestone. At present, high-grade limestone with a $CaCO_3$ content of 94% is used for producing merchantable gypsum. In modeling process, a lot of reactions are considered to develop model. First, the limestone dissolution is simulated by RSTOIC model. Second, SOx absorption and crystallization is used by RCSTR model. Finally the gypsum is separated by using SEPERATORS model. Modeling steps make it easy to reflect further side reactions and physical disturbances. In optimization condition, constraints are set to 93% purity of gypsum, 94% desulfurization efficiency, and total use of limestone at 3710 kg/hr. Under these constraints, the mass flow of low-grade limestone was maximized. As a result, the maximum blending quantity of low-grade limestone for 2,100 kg of high-grade limestone that satisfies constraints is about 1,610 kg.

Evaluation of mechanical properties of KURT granite under simulated coupled condition of a geological repository (복합 처분환경 모사조건에서의 KURT 화강암의 역학적 물성 변화 평가)

  • Park, Seunghun;Kim, Jin-Seop;Kim, Geon Young;Kwon, Sangki
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.4
    • /
    • pp.501-518
    • /
    • 2019
  • The rock properties measured under in-situ geological condition can be used to increase the reliability in numerical simulations with regard to the long-term performance of a high-level waste repository. In this study, the change in mechanical properties of KURT (Korea atomic energy research institute Underground Research Tunnel) granite was evaluated under the simulated THM (Thermo-Hydro-Mechanical) coupled condition due to a deep geological formation in the disposal repository. The rock properties such as uniaxial compression strength, indirect tensile strength, elastic modulus and Poisson's ratio were measured under the coupled test conditions (M, HM, TM, THM). It was found that the mechanical properties of KURT granite is more susceptible to the change in saturation rather than temperature within the test condition of this study. The changes in uniaxial compression strength and indirect tensile strength from the rock samples of dried or saturated conditions showed the maximum relative error of about 20% and 13% respectively under the constant temperature condition. Therefore, it is necessary to use the material properties of rock measured under the coupled THM condition as input parameters for the numerical simulation of long-term performance assessment of a disposal repository

The Estimation of Arctic Air Temperature in Summer Based on Machine Learning Approaches Using IABP Buoy and AMSR2 Satellite Data (기계학습 기반의 IABP 부이 자료와 AMSR2 위성영상을 이용한 여름철 북극 대기 온도 추정)

  • Han, Daehyeon;Kim, Young Jun;Im, Jungho;Lee, Sanggyun;Lee, Yeonsu;Kim, Hyun-cheol
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_2
    • /
    • pp.1261-1272
    • /
    • 2018
  • It is important to measure the Arctic surface air temperature because it plays a key-role in the exchange of energy between the ocean, sea ice, and the atmosphere. Although in-situ observations provide accurate measurements of air temperature, they are spatially limited to show the distribution of Arctic surface air temperature. In this study, we proposed machine learning-based models to estimate the Arctic surface air temperature in summer based on buoy data and Advanced Microwave Scanning Radiometer 2 (AMSR2)satellite data. Two machine learning approaches-random forest (RF) and support vector machine (SVM)-were used to estimate the air temperature twice a day according to AMSR2 observation time. Both RF and SVM showed $R^2$ of 0.84-0.88 and RMSE of $1.31-1.53^{\circ}C$. The results were compared to the surface air temperature and spatial distribution of the ERA-Interim reanalysis data from the European Center for Medium-Range Weather Forecasts (ECMWF). They tended to underestimate the Barents Sea, the Kara Sea, and the Baffin Bay region where no IABP buoy observations exist. This study showed both possibility and limitations of the empirical estimation of Arctic surface temperature using AMSR2 data.

Flow-Induced Noise Prediction for Submarines (잠수함 형상의 유동소음 해석기법 연구)

  • Yeo, Sang-Jae;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Seol, Hanshin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.930-938
    • /
    • 2018
  • Underwater noise radiated from submarines is directly related to the probability of being detected by the sonar of an enemy vessel. Therefore, minimizing the noise of a submarine is essential for improving survival outcomes. For modern submarines, as the speed and size of a submarine increase and noise reduction technology is developed, interest in flow noise around the hull has been increasing. In this study, a noise analysis technique was developed to predict flow noise generated around a submarine shape considering the free surface effect. When a submarine is operated near a free surface, turbulence-induced noise due to the turbulence of the flow and bubble noise from breaking waves arise. First, to analyze the flow around a submarine, VOF-based incompressible two-phase flow analysis was performed to derive flow field data and the shape of the free surface around the submarine. Turbulence-induced noise was analyzed by applying permeable FW-H, which is an acoustic analogy technique. Bubble noise was derived through a noise model for breaking waves based on the turbulent kinetic energy distribution results obtained from the CFD results. The analysis method developed was verified by comparison with experimental results for a submarine model measured in a Large Cavitation Tunnel (LCT).

A Study on the Spontaneous Ignition Characteristics of Wood Pellets related to Change in Flow Rate (공기유량의 변화에 대한 우드펠릿의 자연발화 특성에 관한 연구)

  • Kim, Hyeong-Seok;Choi, Yu-Jung;Choi, Jae-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.590-596
    • /
    • 2019
  • Uses of fossil fuels like coal and oil increases with industrial development, and problems like abnormal climate come up as greenhouse gas increases. Accordingly, studies are actively conducted on eco-friendly renewable energy as a replacement for the main resources, and especially, wood pellets with high thermal efficiency are in the limelight as an alternative fuel in thermal power stations and gas boilers. However, despite a constant increase in their usage, few studies are conducted on their risks like fire and spontaneous combustion. Thus, this study found the auto-ignition temperature and critical ignition temperature of wood pellets with a change in flow rate in a thermostatic bath, using a sample vessel with 20 cm in length, 20 cm in height and 14 cm in thickness to predict their ignition characteristics. Consequently, at the flow rate of 0 NL/min, as the core temperature of the sample increased to higher than the ambient temperature, they ignited at $153^{\circ}C$, when the critical ignition temperature was $152.5^{\circ}C$. At the flow rates of 0.5 NL/min and 1.0 NL/min, it was $149.5^{\circ}C$, and at the flow rate of 1.5 NL/min, it was $147.5^{\circ}C$. Consequently, at the same storage, the more the flow rate, the lower the critical ignition temperature became.

Adsorption and Diffusion Characteristics of Benzene, Toluene, and Xylene Vapors on Activated Carbon and Zeolite 13X (활성탄과 제올라이트 13X에서 벤젠, 톨루엔 및 자일렌 증기의 흡착 및 확산 특성)

  • Jung, Min-Young;Suh, Sung-Sup
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.358-367
    • /
    • 2019
  • Adsorption equilibrium and intraparticle diffusion characteristics of benzene, toluene, and xylene vapors on activated carbon and zeolite 13X were investigated. Static adsorption experiments were carried out under the pressure range of 0.01~0.07 bar while changing the adsorption temperature to 293.15 K, 303.15 K, and 313.15 K, respectively. Adsorption equilibrium was analyzed by Langmuir, Freundlich and Toth models. The adsorption energy was 5.26~31.0 kJ/mol representing physical adsorption characteristics. The maximum adsorption capacity on activated carbon was the largest for benzene, and the smallest for xylene. Toluene was in between. In the case of zeolite 13X, the maximum adsorption capacity was the largest for xylene, and the smallest for benzene as opposed to activated carbon. The effective diffusion coefficients of gas adsorbate were measured to be about $10^{-5}{\sim}10^{-4}cm^2/s$, and increased with temperature. As the pressure increased, the effective diffusion coefficients were decreased. The dependence of effective diffusion coefficients on temperature and pressure was greater in zeolite 13X particles than in activated carbon. Therefore, it is necessary to express the diffusion coefficients as a function of pressure in order to predict the precise dynamic behavior of the adsorption process using zeolite 13X where the pressure fluctuation occurs abruptly.

An experimental study on the influence of undular bore on the hydraulic stability at Shinwol rainwater storage and drainage system (불규칙 단파가 신월저류배수시설의 수리적 안정성에 미치는 영향에 대한 실험 연구)

  • Oh, Jun Oh
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.5
    • /
    • pp.313-323
    • /
    • 2019
  • Deep Tunnel system is a large-scale urban flood control facility installed underground in order to reinforce the lack of drainage systems in developed cities. In a structure like a deep tunnel system, the undular bore generated in the downstream causes a problem in the hydraulic stability of the tunnel. In this study, to investigate the influence of the undular bore on the hydraulic stability at the "Shinwol rainwater storage and drainage system", under construction for the first time in the country, a hydraulic model experiment was conducted on various flooding inflow scenarios. As a result of the hydraulic model experiment carried out in this study, the undular bore generated downstream is trapped in the pipe while moving to upstream, pushes the compressed air. It is judged that overflow occurred by choking the vertical drop shaft in the process when this compressed air is being exhaust through the upstream vertical drop shaft and blocking flood inflow. In addition, the analysis of velocity of undular bore shows that the undular bore transfers energy, and at this time, the pressure rose in the pipe and the velocity increment occurred of the undular bore. Further studies are needed to predict the size and velocity of undular bore, which plays an important role in the hydraulic stability of the tunnel in the deep tunnel system.