• Title/Summary/Keyword: 에너지수확

Search Result 254, Processing Time 0.032 seconds

Energy harvesting characteristics on curvature based PVDF cantilever energy harvester due to vortex induced vibration (곡면을 가진 외팔보형 PVDF 에너지 하베스터의 와류유기진동으로 인한 에너지 수확 특성)

  • Woo-Jin Song;Jongkil Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.2
    • /
    • pp.168-177
    • /
    • 2024
  • When designing an underwater Piezoelectric Energy Harvester (PEH), Vortex Induced Vibration (VIV) is generated throughout the cantilever through a change in curvature, and the generation of VIV increases the vibration displacement of the curved cantilever PEH, which is an important factor in increasing actual power. The material of the curved PEH selected a Polyvinyline Di-Floride (PVDF) piezoelectric film, and the flow velocity is set at 0.1 m/s to 0.50 m/s for 50 mm, 130 mm, and 210 mm with various curvatures. The strain energy change of PEH by VIV was observed. The smaller the radius of curvature, the larger the VIV, and as the flow rate increased, more VIV appeared. Rapid shape transformation due to the small curvature was effective in generating VIV, and strain energy, normalized voltage, average power, etc. To increase the amount of power of the PEH, it is considered that the average power will increase as the number of curved PEHs increases as well as the steep curvature is improved.

Development of a Movable Pellet Manufacturing Equipment (이동식 펠릿 제조장비 개발에 대한 연구)

  • Jho, Shi Gie;Kum, Sungmin
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.13-19
    • /
    • 2015
  • The wood pellet is standardized of woody type fuel which of small cylindrical shape that is produced compress wood remnants in process of woody processing. The pellet is critical energy which expects to increase of the amount used in future. It consumes fuel which of home, common facilities stove and boiler, district heating, and CHP, etc. This study was to develop a movable pellet manufacturing equipment that can be mounted on a truck. The pellet production volume is approximately 309kg per hour, daily output is about 2ton. One days work based on the expected revenue of approximately \268,000 feasibility is considered sufficient.

Sensor Node Circuit with Solar Energy Harvesting (빛 에너지 수확을 이용한 센서 노드 회로)

  • Seo, Dong-hyeon;Jo, Yong-min;Woo, Dae-keon;Yoon, Eun-jung;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.371-374
    • /
    • 2013
  • In this paper, a sensor node circuit using solar energy harvesting is proposed. PMU(Power Management Unit) manages the energy converted from a solar cell. In order to supply a constant voltage to the sensor node, an LDO (Low Drop Out Regulator) is used. The LDO drives a temperature sensor and a SAR ADC(Successive Approximate Register Analog-to-Digital Converter). The circuit has been designed in 0.35um CMOS process.

  • PDF

An Auto-Switching Energy Harvesting Circuit Using Vibration and Thermoelectric Energy (진동과 열에너지를 이용한 자동 스위칭 에너지 하베스팅 회로)

  • Yoon, Eun-Jung;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.19 no.2
    • /
    • pp.210-218
    • /
    • 2015
  • In this paper an auto-switching energy harvesting circuit using vibration and thermoelectric energy is proposed. Since the maximum power point of a thermoelectric generator(TEG) output and a vibration device(PEG) output is 1/2 of their open-circuit voltage, an identical MPPT controller can be used for both energy sources. The proposed circuit monitors the outputs of the TEG and PEG, and chooses the energy source generating a higher output voltage using an auto-switching controller, and then harvests the maximum power from the selected device using the MPPT controller. The proposed circuit is designed in a $0.35{\mu}m$ CMOS process and its functionality has been verified through extensive simulations. The designed chip occupies $1.4mm{\times}1.2mm$ including pads.

A CMOS Interface Circuit for Vibrational Energy Harvesting with MPPT Control (MPPT 제어 기능을 갖는 진동에너지 수확을 위한 CMOS 인터페이스 회로)

  • Yang, Min-Jae;Yoon, Eun-Jung;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.20 no.1
    • /
    • pp.45-53
    • /
    • 2016
  • This paper presents a CMOS interface circuit for vibration energy harvesting with MPPT (Maximum Power Point Tracking). In the proposed system a PMU (Power Management Unit) is employed at the output of a DC-DC boost converter to provide a regulated output with low-cost and simple architecture. In addition an MPPT controller using FOC (Fractional Open Circuit) technique is designed to harvest maximum power from vibration devices and increase efficiency of overall system. The AC signal from vibration devices is converted into a DC signal by an AC-DC converter, and then boosted through the DC-DC boost converter. The boosted signal is converted into a duty-cycled and regulated signal and delivered to loads by the PMU. A full-wave rectifier using active diodes is used as the AC-DC converter for high efficiency, and a DC-DC boost converter architecture using a schottky diode is employed for a simple control circuitry. The proposed circuit has been designed in a 0.35um CMOS process, and the designed chip occupies $915{\mu}m{\times}895{\mu}m$. Simulation results shows that the maximum power efficiency of the entire system is 83.4%.

Oil Extraction and Biodiesel Production from Micro-Algae Pre-treated with Microwave (Microwave를 이용한 미세조류로부터 오일 추출 및 바이오디젤 생산)

  • Kim, Deogkeun;Choi, Byoungyun;Kim, Sungmin;Oh, Youkwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.250.2-250.2
    • /
    • 2010
  • 빛과 공기 중의 이산화탄소를 고정화하여 생성되는 바이오매스(biomass)로부터 다양한 에너지 및 물질을 생산하는 연구는 석유고갈과 환경문제 해결의 한 방안으로서 활발히 진행되어 왔으며, 앞으로도 그 지속 가능성과 환경 친화성에 의해 바이오에너지 이용 및 보급은 꾸준한 증가세를 보일 것으로 전망된다. 바이오디젤, 바이오에탄올의 경우는 미국, 브라질, EU, 한국 등에서 상용화되어 사용되고 있으며 그 생산량이 계속적으로 증가하고 있다. 하지만, 바이오연료의 보급 증가는 식량 자원과의 충돌과 열대우림 파괴 등의 부작용을 일으키고 있다. 이러한 문제 해결의 일환으로 단위면적당 생산성이 대두, 유채보다 월등한 것으로 보고되는 미세조류에 대한 관심이 증가하고 있으며 우수 미세조류종 개발, 미세조류 고속배양 및 수확, 미세조류로부터 에너지 및 유용물질, 소재 생산에 대한 연구가 활발히 진행되고 있다. 본 연구에서는 미세조류로부터 바이오디젤 원료유를 생산하기 위해 Soxhlet을 이용한 추출 방법을 이용하였다. 추출되는 오일은 사용 용매의 극성에 따라 물성과 추출 효율에 차이가 큰 것으로 나타났다. 강한 극성의 용매일 경우, 엽록소와 단백질이 같이 추출되는 문제가 있으며 약한 극성 용매는 세포벽의 방해로 용매가 세포내부로 흡수되지 못하는 문제가 있다. 추출 효율이 높은 극성용매의 경우 불순물을 제거해야 고순도의 바이오디젤의 생산이 가능하고 비극성 용매는 추출 오일의 물성은 좋으나 수율이 매우 낮게 측정되었다. 이러한 동시추출을 방지함과 동시에 추출 효율을 높이기 위해 본 연구에서는 세포벽 파괴 후 용매추출하는 방법으로서 미세조류를 Microwave에 노출시켜 오일 추출율을 증가시키는 전처리 연구를 수행하였다. 전처리시, Microwave에 의한 열 발생은 미세조류를 탄화시키기 때문에 열매체로서 물을 혼합하여 탄화를 방지하고 세포벽 내외부의 가열효과로 세포벽을 파괴하고자 하였다. Microwave에 의한 에너지 손실을 줄이며 세포벽 파괴에 효과적인 수분혼합비를 조사하였으며 Microwave에 노출 후 잔류수분을 건조하고 효율적으로 용매를 접촉시키기 위해 분쇄를 수행하였다. 모든 전처리 반응을 거친 미세조류에서 약 2배 증가된 추출수율을 얻을 수 있었으며, SEM을 통해 전처리 미세조류와 미전처리 미세조류를 분석해본 결과 전처리 미세조류의 다공성이 증가함을 확인하였다. 또한, 90%의 메탄올에 미세조류를 녹여 엽록소 함유량을 측정한 결과, 전처리 미세조류의 엽록소가 미전처리 미세조류보다 약 7배가량 감소함을 확인할 수 있었다.

  • PDF

Energy Harvesting from Reverse Electrodialysis in Ion-Selective Membrane Formed with Self-Assembled Nanoparticles (미세유체칩 내 자기조립화된 나노입자로 이루어진 이온교환막을 이용한 역전기투석 에너지 발전)

  • Choi, Eunpyo;Kwon, Kilsung;Kim, Daejoong;Park, Jungyul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.5
    • /
    • pp.437-441
    • /
    • 2014
  • This paper presents a novel microplatform for high power generation based on reverse electrodialysis. The ideal cation-selective membrane for power generation was realized using geometrically controlled in situ self-assembled nanoparticles. Our proposed membranes can be constructed through a simple and cost-effective process that uses microdroplet control with nanoparticles in a microchannel. Another advantage of our system is that the maximum power and energy conversion efficiency can be improved by changing the geometry of the microchannel and proper selection of the nanoparticle size and material. This proposed platform can be used to supply power sources to other microdevices and contribute to a fundamental understanding of ion transport behavior and the power generation mechanism.

A Multi-Harvested Self-Powered Sensor Node Circuit (다중 에너지 수확을 이용한 자가발전 센서노드 회로)

  • Seo, Yo-han;Lee, Myeong-han;Jung, Sung-hyun;Yang, Min-Jae;Yoon, Eun-jung;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.585-588
    • /
    • 2014
  • This paper presents a self-powered sensor node circuit using photovoltaic and vibration energy harvesting. The harvested energy from a solar cell and a vibration device(PZT) is stored in a storage capacitor. The stored energy is managed by a PMU(Power Management Unit). In order to supply a stable voltage to the sensor node, an LDO(Low Drop Out Regulator) is used. The LDO drives a temperature sensor and a SAR ADC(Successive Approximate Register Analog-to-Digital Converter), and 10-bit digital output data corresponding to current temperature is obtained. The proposed circuit is designed in a 0.35um CMOS process, and the designed chip size including PADs is $1.1mm{\times}0.95mm$.

  • PDF

Influence of Sulfur Fertilization on Quality Characteristics and Antioxidant Activities of Onions during Storage at 4℃ (유황처리가 4℃ 저장 중 양파의 품질 특성 및 항산화 활성에 미치는 영향)

  • Jo, Hyeri;Surh, Jeonghee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.12
    • /
    • pp.1776-1783
    • /
    • 2016
  • Onions cultivated with (SY) or without (SN) sulfur application were stored for up to 36 weeks at $4^{\circ}C$ since harvest, after which they were analyzed for chemical composition and antioxidant activity in relation to sulfur (S) application and storage duration. Compared with SN onions, SY onions showed lower moisture and higher protein, soluble solids, and flavonoid contents at the time of harvest, and moisture and protein contents remained the same until 20 weeks of storage. However, soluble solids decreased while antioxidant activities, including flavonoids content, total reducing capacity, and superoxide dismutase (SOD)-like activity, appreciably increased as storage time increased to 20 weeks, which could be attributed to onion respiration and protective response to environmental stresses, respectively. There were abrupt decreases in flavonoid content and SOD-like activity at 36 weeks, presumably due to severe deterioration. Interestingly, all phenomena observed depending on storage time were independent of S application of onions. The results show that the critical factor influencing the chemical composition and antioxidant activity of onions during storage was postharvest storage duration rather than S application during onion cultivation.

Energy-Efficient Routing Protocol based on Interference Awareness for Transmission of Delay-Sensitive Data in Multi-Hop RF Energy Harvesting Networks (다중 홉 RF 에너지 하베스팅 네트워크에서 지연에 민감한 데이터 전송을 위한 간섭 인지 기반 에너지 효율적인 라우팅 프로토콜)

  • Kim, Hyun-Tae;Ra, In-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.3
    • /
    • pp.611-625
    • /
    • 2018
  • With innovative advances in wireless communication technology, many researches for extending network lifetime in maximum by using energy harvesting have been actively performed on the area of network resource optimization, QoS-guaranteed transmission, energy-intelligent routing and etc. As known well, it is very hard to guarantee end-to-end network delay due to uncertainty of the amount of harvested energy in multi-hop RF(radio frequency) energy harvesting wireless networks. To minimize end-to-end delay in multi-hop RF energy harvesting networks, this paper proposes an energy efficient routing metric based on interference aware and protocol which takes account of various delays caused by co-channel interference, energy harvesting time and queuing in a relay node. The proposed method maximizes end-to-end throughput by performing avoidance of packet congestion causing load unbalance, reduction of waiting time due to exhaustion of energy and restraint of delay time from co-channel interference. Finally simulation results using ns-3 simulator show that the proposed method outperforms existing methods in respect of throughput, end-to-end delay and energy consumption.