• Title/Summary/Keyword: 에너지반응인자

Search Result 186, Processing Time 0.031 seconds

Two Layer Modelling with Applications to Exchange Flow and Internal Tide (이층류 모델링의 교환류와 내부조석파 연구에의 적용)

  • Kang, Sok-Kuh;Abbott, Michael-B.;Heung, Jae-Lie;Yum, Ki-Dai
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.1
    • /
    • pp.9-23
    • /
    • 1997
  • A numerical study of a two-layer, stratified flow is investigated, using the implicit finite difference method in one dimension. The results of computational method have been tested and, in case of lock exchange flow, compared with the results of experimental data. The results of model experiments with various interfacial, bottom friction coefficients along with various time weighting factor of numerical scheme and dissipative interface are shown and discussed. Two-layer model experiment has been also carried out to investigate the generation and propagation characteristics of internal tidal wave over the steep bottom topography under stratified condition. The internal wave seems to well radiate through the downstream boundary under the experiments adopting radiation conditions both at two layers and only at upper layer, confirming the applicability of radiational boundary condition in stratified flows. It is also shown that the internal wave through the downstream boundary propagates more actively with increasing thickness of lower layer in the downstream. This implies that the potential tidal energy in the interface will depend upon the thickness of lower layer for the constant thickness of upper layer.

  • PDF

Development of a surrogate model based on temperature for estimation of evapotranspiration and its use for drought index applicability assessment (증발산 산정을 위한 온도기반의 대체모형 개발 및 가뭄지수 적용성 평가)

  • Kim, Ho-Jun;Kim, Kyoungwook;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.969-983
    • /
    • 2021
  • Evapotranspiration, one of the hydrometeorological components, is considered an important variable for water resource planning and management and is primarily used as input data for hydrological models such as water balance models. The FAO56 PM method has been recommended as a standard approach to estimate the reference evapotranspiration with relatively high accuracy. However, the FAO56 PM method is often challenging to apply because it requires considerable hydrometeorological variables. In this perspective, the Hargreaves equation has been widely adopted to estimate the reference evapotranspiration. In this study, a set of parameters of the Hargreaves equation was calibrated with relatively long-term data within a Bayesian framework. Statistical index (CC, RMSE, IoA) is used to validate the model. RMSE for monthly results reduced from 7.94 ~ 24.91 mm/month to 7.94 ~ 24.91 mm/month for the validation period. The results confirmed that the accuracy was significantly improved compared to the existing Hargreaves equation. Further, the evaporative demand drought index (EDDI) based on the evaporative demand (E0) was proposed. To confirm the effectiveness of the EDDI, this study evaluated the estimated EDDI for the recent drought events from 2014 to 2015 and 2018, along with precipitation and SPI. As a result of the evaluation of the Han-river watershed in 2018, the weekly EDDI increased to more than 2 and it was confirmed that EDDI more effectively detects the onset of drought caused by heatwaves. EDDI can be used as a drought index, particularly for heatwave-driven flash drought monitoring and along with SPI.

Neutron Dose Measurements Using TLDs in a 252Cf Neutron Field (252Cf 중성자장에서 열형광선량계(TLD)를 이용한 중성자 방사선량 측정)

  • Chang, Insu;Kim, Sang In;Lee, Jung Il;Kim, Jang Lyurl;Kim, Bong Hwan
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.1
    • /
    • pp.37-43
    • /
    • 2013
  • In case of neutron dose measurement using TLDs (thermo-luminescence dosimeters), because the neutron energy dependence of the TLD is very high, the calibration of the energy response according to the characteristics of the neutron spectrum of workplace is required. In the present study, the ambient dose equivalent rates inside and around the Long-Counter (neutron detector) with narrow and complex inside in the neutron field of $^{252}Cf$ were evaluated. The calibration factors to account for the neutron energy dependence of TLDs were established for both the bare and $D_2O$ modulated $^{252}Cf$ neutron beams, respectively. The values of the TLD's measurement were compared with the computational results of the MCNPX (Monte Carlo N-Particles transport code). When using the two calibration factors of the TLD than a single calibration factor, the measured and the calculated values at the point of verification outside and inside the Long-Counter were in more good agreement. This results show that TLD should be calibrated in the reference neutron field similar to workplace situation.

Design Optimization of Duplex Burnable Poison Rods and Feasibility Evaluation for Core Design (이중구조 가연성독봉 설계안의 최적화 및 노심 핵설계 타당성 평가)

  • Yoon Seok-Kyun;Lee Dae-Jin;Kim Myung-Hyun
    • Journal of Energy Engineering
    • /
    • v.13 no.4
    • /
    • pp.242-258
    • /
    • 2004
  • The duplex burnable poison absorbers concept was suggested by Korea Atomic Energy Research Institute. This BP rod is composed of inner region of natural U-Gd$_2$O$_3$ and outer shell of enriched UO$_2$-Er$_2$O$_3$. It is expected that this burnable absorber has same reactivity control capability with gadolinia burnable absorber used in extened fuel cycle. In order to evaluate the nuclear feasibility of duplex BPs, the nuclear design characteristics were compared with that of four types of burnable absorbers; gadolinia, erbia, IFBA, dysprosia duplex BP on 24 months fuel cycle for Korean Standard Nuclear Power plants. According to the evaluation results of nuclear characteristics, the duplex BPs were better than other BPs on k-infinitives, reactivity holddown worth (RHW), pin power peaking and moderator temperature coefficient (MTC). The possibility of nuclear core design was also confirmed based on the optimized fuel assemblies which were searched for a sensitivity analysis. Characteristics of core design with duplex BPs was compared with that of reference core with gadolinia BPs for cycle length, power peaking and MTC. The duplex BP core had a little longer cycle length by 4 to 7 days because of increased amount of fissile in enriched uranium at the outer shell of duplex BP In case of power peaking F$\_$Q/ of duplex BP core was reduced from 1.5773 to 1.5335. MTC was also less -0.48 pcm/C than that of reference core. Finally, evaluation of fuel cycle economy was performed for the manufacturing feasibility test and fuel cost evaluation with duplex BPs. Fuel cycle economy of duplex BP core almost was equivalent with that of gadolinia BP core.

Production of Methane from Anaerobic Fermentation of Marine Macro-algae (해조류의 혐기성 발효를 이용한 메탄 생산)

  • Kim, Jeong-Min;Lee, Yeung-Ho;Jung, Sung-Hoon;Lee, Jin-Tae;Cho, Moo-Hwan
    • Clean Technology
    • /
    • v.16 no.1
    • /
    • pp.51-58
    • /
    • 2010
  • Methane was produced from the anaerobic digestion of marine macro-algae. Elemental analysis was first performed to estimate the theoretical methane production of three macro-algae (Undaria pinnatifida, Laminaria japonica, Hizikia fusiformis). Three algae were found to contain C 34 ~ 36%, H 5%, O 37 ~ 43%, N 2 ~ 4%, S 0.4 ~ 0.7%, and ash 14~21%, and the theoretical methane content was in the range of 56 ~ 60%, which can produce 442 ~ 568 mL $CH_4$ per g of volatile solid (VS). Using the biological methane potential (BMP) test, we found that L. japonica resulted in the highest yield of methane (52%). Moreover, various operational conditions, such as algae amount, pH, salinity, particle size, and pre-treatment, were investigated in order to find an optimal condition of anaerobic digestion. At pH 8.0, the autoclaved L. japonica (5g VS/200 mL), when used without washing salt, produced 268.5 mL/g VS which is 65% of the theoretical methane productions. Furthermore, using a CSTR (with the working volume of 7 L out of the total volume of 10 L), we have successfully operated the reactor for 65 days and obtained maximum methane production rate of 1.4 L/day with purity of 70%.

Sintering behavior and electrical properties of transition metal (Ni, Co, Mn) based spinel oxides for temperature sensor applications (복합전이금속(Ni, Co, Mn) 기반 스피넬계 산화물의 소결 거동 및 온도센서 특성 연구)

  • Younghee So;Eunseo Lee;Jinyoung Lee;Sungwook Mhin;Bin Lee;Hyung Tae Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.2
    • /
    • pp.73-77
    • /
    • 2024
  • The spinel-type oxide (Nix, Mny, Co3-x-y)O4 (NMC) is widely utilized as a material for temperature sensors with a negative temperature coefficient (NTC), finding applications across various industries including electric vehicle battery management systems. Typically, NMC is manufactured using solid-state reaction methods employing powders of Ni, Mn, and Co compounds, with the densification process through sintering recognized as a crucial factor determining the electrical properties of the temperature sensor material. In this study, NMC pellets were synthesized via solid-state reaction and their crystallographic and microstructural characteristics were investigated. Also, the activation energy for densification behavior during the sintering process was determined. According to the analysis results, the room temperature resistance of the NMC pellets was measured at 10.03 Kohm, with the sensitivity parameter, B-value, recorded at 3601.8 K, indicating their potential applicability as temperature sensors across various industrial fields. Furthermore, the activation energy for densification was found to be 273.3 ± 0.4 kJ/mol, providing valuable insights into the thermodynamic aspects of the sintering process of the NMC.

Characterization of Physical Processes and Secondary Particle Generation in Radiation Dose Enhancement for Megavoltage X-rays (MV X선의 방사선 선량 증강 현상에서 물리적 특성과 이차입자의 발생)

  • Hwang, Chulhwan;Kim, JungHoon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.791-799
    • /
    • 2019
  • We evaluated the physical properties that occur to dose enhancement and changes from secondary particle production resulting from the interaction between enhancement material. Geant4 was used to perform a Monte Carlo simulation, and the medical internal radiation dose (MIRD) head phantom were employed. X-rays of 4, 6, 10, 15, 18, and 25 MV were used. Aurum (Au) and gadolinium (Gd) were applied within the tumor volume at 10, 20, and 30 mg/g, and an experiment using soft tissue exclusively was concomitantly performed for comparison. Also, particle fluence and initial kinetic energy of secondary particle of interaction were measured to calculate equivalent doses using the radiation weight factor. The properties of physical interaction by the radiation enhancement material showed the great increased in photoelectric effect as compared to the compton scattering and pair production, occurred with the highest, in aurum and gadolinium it is shown in common. The photonuclear effect frequency increased as the energy increased, thereby increasing secondary particle production, including alpha particles, protons, and neutrons. During dose enhancement using aurum, a maximum 424.25-fold increase in the equivalent dose due to neutrons was observed. This study was Monte Carlo simulation corresponds to the physical process of energy transmission in dose enhancement. Its results may be used as a basis for future in vivo and in vitro experiments aiming to improve effects of dose enhancement.

Study on Pretreatment Methods to Prevent Tissue Softening of Heated Onion (가열 양파의 조직 연화 방지를 위한 전처리 방법에 관한 연구)

  • Choi, Jun-Bong;Cho, Won-Il
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.56-62
    • /
    • 2015
  • Various pretreatment methods were evaluated to prevent tissue softening of heated onion. Changes in onion tissue firmness during heating were explained by 3-mechanism model consisting of texture hardening at low temperature ($60-80^{\circ}C$) and substrate softening at high temperature. Preheating of onion in a $Ca^{2+}$-containing solution significantly improved its texture after high-temperature heating. The improvement of firmness by preheating at low temperature was related to the formation of strong cross-linking between carboxyl groups and $Ca^{2+}$ by the action of pectin methylesterase in onion. The highest firmness was obtained by pre-heating at $70^{\circ}C$ for 120 min in 0.5% calcium solution. This result was supported by chemical analysis showing that the amount of bound calcium was the highest at $70^{\circ}C$. Further investigation should be carried out to establish the optimal conditions to prevent the softening of various vegetables.

A Study on the Kinetics of Copper Ions Reduction and Deposition Morphology with the Rotating Disk Electrode (RDE를 이용한 구리이온의 환원속도 및 전착형태에 관한 고찰)

  • Nam, Sang Cheol;Um, Sung Hyun;Lee, Choong Young;Tak, Yongsug;Nam, Chong Woo
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.645-652
    • /
    • 1997
  • Electrochemical characteristics and kinetic parameters of copper ion reduction were investigated with a platinum rotating disk electrode (RDE) in a diffusion controlled region. Reduction of Cu(II) in sulfate had one-step two-xelectron process, while the reduction of Cu(II) in chloride solution was involved two one-electron processes. The transfer coefficient of Cu(II) in sulfate solution was lowest, and the transfer coefficient of Cu(I) in halide solutions had the value of nearly one. In chloride solutions, electrodeposition rate of Cu(II) was about one hundred times faster than Cu(I). Diffusion coefficient increased in the order of Cu(II) in chloride solution, Cu(I) in the iodide, bromide, chloride solution, Cu(II) in sulfate solution. The calculated ionic radii and activation energy for diffusion decreased in the same order as above. Morphological study on the copper electrodeposition indicated that the electrode surface became rougher as both concentration and reduction potential increases, and the roughness of the surface was analyzed with UV/VIS spectrophotometer.

  • PDF

Effects of NaCl/H3PO4 Flame Retardant Treatment on Lyocell Fiber for Thermal Stability and Anti-oxidation Properties (NaCl/H3PO4 내염화 처리가 라이오셀 섬유의 열 안정 및 내산화 특성에 미치는 영향)

  • Kim, Eun Ae;Bai, Byong Chol;Jeon, Young-Pyo;Lee, Chul Wee;Lee, Young-Seak;In, Se Jin;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.418-424
    • /
    • 2014
  • The improved thermal stability and anti-oxidation properties of Lyocell fiber were studied based on flame retardant treatment by using NaCl/$H_3PO_4$ solution. The optimized conditions of flame retardant treatment were studied on various maxing ratio of NaCl and $H_3PO_4$ and the mechanism was proposed through experimental results of thermal stability anti-oxidation. The IPDT (integral procedural decomposition temperature), LOI (limited oxygen index) and $E_a$ (activation energy) increased 23, 30 and 24% respectively via flame retardant treatment. It is noted that thermal stability and anti-oxidation improved based on char and carbon layer formation by dehydrogenation and dissociation of C-C bond resulting the hindrance of oxygen and heat energy into polymer resin. The optimized conditions for efficient flame retardant property of Lyocell fiber were provided using NaCl/$H_3PO_4$ solution and the mechanism was also studied based on experimental results such as IDT (initial decomposition temperature), IPDT, LOI and $E_a$.