• Title/Summary/Keyword: 엄밀한 동적 요소

Search Result 27, Processing Time 0.025 seconds

Improvement of the finite element dynamic model by using exact dynamic elements (엄밀한 동적 요소를 이용한 유한 요소 동적 모델의 개선)

  • Cho, Yong-Ju;Kim, Jong-Wook;Hong, Seong-Wook
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.590-595
    • /
    • 2001
  • To improve the modeling accuracy for the finite element method, this paper proposes a method to make a combined use of finite elements and exact dynamic elements. Exact interpolation functions for a Timoshenko beam element are derived and compared with interpolation functions of the finite element method (FEM). The exact interpolation functions are tested with the Laplace variable varied. The exact interpolation functions are used to gain more accurate mode shape functions for the finite element method. This paper also presents a combined use of finite elements and exact dynamic elements in design problems. A Timoshenko frame with tapered sections is tested to demonstrate the design procedure with the proposed method.

  • PDF

Exact Dynamic Stiffness Matrix of Nonsymmetric Thin-walled Beams Subjected to Eccentrically Axial Forces (편심축하중을 받는 비대칭 박벽보의 엄밀한 동적강도행렬)

  • Kim, Moon Young;Yun, Hee Taek
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.6
    • /
    • pp.703-713
    • /
    • 2001
  • Derivation procedures of exact dynamic stiffness matrices of thin-walled straight beams subjected to eccentrically axial forces are rigorously presented for the spatial free vibration analysis. An exact dynamic stiffness matrix is established from governing equations for a uniform beam element with nonsymmetric thin-walled cross section. First this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, the displacement functions of displacement parameters are exactly derived and finally exact stiffness matrices are determined using element force-displacement relationships. The natural frequencies of nonsymmetric thin-walled straight beams are evaluated and compared with analytical solutions or results by thin-walled beam element using the cubic Hermitian polynomials and ABAQU's shell elements in order to demonstrate the validity of this study.

  • PDF

Derivation of Exact Dynamic Stiffness Matrix of a Beam-Column Element on Elastic Foundation (균일하게 탄성지지된 보-기둥요소의 엄밀한 동적강성행렬 유도)

  • 김문영;윤희택;곽태영
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.463-469
    • /
    • 2002
  • The governing equation and force-displacement rotations of a beam-column element on elastic foundation we derived based on variational approach of total potential energy. An exact static and dynamic 4×4 element stiffness matrix of the beam-column element is established via a generalized lineal-eigenvalue problem by introducing 4 displacement parameters and a system of linear algebraic equations with complex matrices. The structure stiffness matrix is established by the conventional direct stiffness method. In addition the F. E. procedure is presented by using Hermitian polynomials as shape function and evaluating the corresponding elastic and geometric stiffness and the mass matrix. In order to verify the efficiency and accuracy of the beam-column element using exact dynamic stiffness matrix, buckling loads and natural frequencies are calculated for the continuous beam structures and the results are compared with F E. solutions.

Dynamic Analysis of Asymmetric Bending-torsion Coupled Beam Using Exact Dynamic Elements (엄밀한 동적 요소를 이용한 비대칭 굽힘-비틀림 연성 보의 동적 해석)

  • Hong, Seong-Uk;Gang, Byeong-Sik;Jo, Yong-Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.87-95
    • /
    • 2001
  • Although asymmetric beams are widely used in industry, few research results are available on the dynamic modeling and analysis of structure including asymmetric beams. Asymmetric beams cause complicated vibration phenomena due to the inherent bending-torsion coupled vibration. In this paper, an exact dynamic element matrix for the bending-torsion coupled vibration of asymmetric beam is derived. The application of the derived exact dynamic element matrix is demonstrated by some illustrative examples wherein the natural frequencies by the proposed modeling method are compared with those available in the literature. Another numerical example is also illustrated which deals with a general beam with joints. The numerical study shows that the exact dynamic element model is useful for the dynamic analysis of asymmetric bending-torsion coupled beams.

  • PDF

Modeling and Its Modal Analysis for Distributed Parameter Frame Structures using Exact Dynamic Elements (엄밀한 동적 요소를 이용한 프레임 구조물의 모델링 및 모드 해석)

  • 김종욱;홍성욱
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.966-974
    • /
    • 1999
  • This paper introduces modeling and its modal analysis procedure for exact and closed form solution of in-plane vibrations of general Timoshenko frame structures using exact dynamic element method(EDEM). The derivation procedure of the exact system dynamic matrices for Timoshenko beam frames is described. A new modal analysis procedure is also proposed since the conventional modal analysis schemes are not adequate for the proposed, exact system dynamic matrix. The proposed method provides exact modal parameters as well as all kinds of closed form solutions for general frame structures. Two numerical examples are presented for validating and illustrating the proposed method. The numerical study proves that the proposed method is useful for dynamic analysis of frame structures.

  • PDF

Derivation and verification of the exact dynamic element for composite Timoshenko beam (복합재 티모센코 보의 엄밀한 동적 요소 유도 및 검증)

  • Kang, B.S.;Hong, S.W.;Park, J.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.540-545
    • /
    • 2000
  • This paper presents the exact dynamic element for composite Timoshenko beam, which is inherently subject both to bending and torsional vibration. The coupling effect between bending and torsional vibrations is rigorouly considered in the derivation of the exact dynamic element. Two examples are provided to validate and illustrate the proposed exact dynamic element matrix for composite Timoshenko beam.

  • PDF

A Study on the Combined Use of Exact Dynamic Elements and Finite Elements (엄밀한 동적 요소와 유한 요소 통합 해석 방법에 관한 연구)

  • 홍성욱;조용주;김종선
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.2
    • /
    • pp.141-149
    • /
    • 2002
  • Although the finite element method has become an indispensible tool for the dynamic analysis of structures, difficulty remains to quantify the errors associated with discretization. To improve the modeling accuracy, this paper proposes a method to make a combined use of finite elements and exact dynamic elements. Exact interpolation functions for the Timoshenko beam element are derived using the exact dynamic element modeling (EDEM) and compared with interpolation functions of the finite element method (FEM). The exact interpolation functions are tested with the Laplace variable varied. A combined use of finite element method and exact interpolation functions is presented to gain more accurate mode shape functions. This paper also presents a combined use of finite elements and exact dynamic elements in design/reanalysis problems. Timoshenko flames with tapered sections are tested to demonstrate the design procedure with the proposed method. The numerical study shows that the combined use of finite element model and exact dynamic element model is very useful.

Improved Static Element Stiffness Matrix of Thin-Walled Beam-Column Elements (박벽보-기둥 요소의 개선된 정적 요소강성행렬)

  • Yun, Hee Taek;Kim, Nam Il;Kim, Moon Young;Gil, Heung Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.509-518
    • /
    • 2002
  • In order to perform the spatial buckling and static analysis of the nonsymmetric thin-walled beam-column element, improved exact static stiffness matrices were evaluated using equilibrium equation and force-deformation relationships. This numerical technique was obtained using a generalized linear eigenvalue problem, by introducing 14 displacement parameters and system of linear algebraic equations with complex matrices. Unlike the evaluation of dynamic stiffness matrices, some zero eigenvalues were included. Thus, displacement parameters related to these zero eigenvalues were assumed as polynomials, with their exact distributions determined using the identity condition. The exact displacement functions corresponding to three loadingcases for initial stress-resultants were then derived, by consistently combining zero and nonzero eigenvalues and corresponding eigenvectors. Finally, exact static stiffness matrices were determined by applying member force-displacement relationships to these displacement functions. The buckling loads and displacement of thin-walled beam were evaluated and compared with analytic solutions and results using ABAQUS' shell element or straight beam element.

Dynamic modeling and analysis of curved beams (곡률을 가지는 보의 동적 모델링 및 해석)

  • 이대형;강병식;홍성욱;박중윤
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.609-612
    • /
    • 1997
  • This paper deals with in-plane vibration analysis of curved beams. The exact dynamic element method is applied to obtain the dynamic model for curved beams. Numerical examples are provided to validate the proposed modeling and analysis method. The numerical results show that the proposed method is useful for the dynamic analysis of curved beams.

  • PDF

A study on the Modeling and Dynamic Analysis of Cracked Beam Structures (균열이 있는 보의 모델링 및 동적 해석에 관한 연구)

  • 홍성욱;김만달;이종원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.197-204
    • /
    • 2003
  • This paper presents an efficient modeling and dynamic analysis method for open cracked beam structures. An equivalent bending spring model is introduced to represent the structural weakening effect in the presence of cracks. The proposed method adopts the exact dynamic element method (EDEM) to avoid the inconvenience and numerical errors in association with re-meshing the structural model with the crack position changed. The proposed modeling method is validated through a series of simulation and experiments. First, the proposed method is rigorously compared with a commercial finite element code. Then, two kinds of experiments are performed to validate the proposed modeling method. Finally, a diagnostic scheme fur open cracked beam structures is proposed and demonstrated through a numerical example.