• Title/Summary/Keyword: 얼굴 특징추출

Search Result 588, Processing Time 0.025 seconds

Robust Extraction of Heartbeat Signals from Mobile Facial Videos (모바일 얼굴 비디오로부터 심박 신호의 강건한 추출)

  • Lomaliza, Jean-Pierre;Park, Hanhoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.1
    • /
    • pp.51-56
    • /
    • 2019
  • This paper proposes an improved heartbeat signal extraction method for ballistocardiography(BCG)-based heart-rate measurement on mobile environment. First, from a mobile facial video, a handshake-free head motion signal is extracted by tracking facial features and background features at the same time. Then, a novel signal periodicity computation method is proposed to accurately separate out the heartbeat signal from the head motion signal. The proposed method could robustly extract heartbeat signals from mobile facial videos, and enabled more accurate heart rate measurement (measurement errors were reduced by 3-4 bpm) compared to the existing method.

Face Region Detection Algorithm using Euclidean Distance of Color-Image (칼라 영상에서 유클리디안 거리를 이용한 얼굴영역 검출 알고리즘)

  • Jung, Haing-sup;Lee, Joo-shin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.3
    • /
    • pp.79-86
    • /
    • 2009
  • This study proposed a method of detecting the facial area by calculating Euclidian distances among skin color elements and extracting the characteristics of the face. The proposed algorithm is composed of light calibration and face detection. The light calibration process performs calibration for the change of light. The face detection process extracts the area of skin color by calculating Euclidian distances to the input images using as characteristic vectors color and chroma in 20 skin color sample images. From the extracted facial area candidate, the eyes were detected in space C of color model CMY, and the mouth was detected in space Q of color model YIQ. From the extracted facial area candidate, the facial area was detected based on the knowledge of an ordinary face. When an experiment was conducted with 40 color images of face as input images, the method showed a face detection rate of 100%.

  • PDF

A Study on Emotion Recognition from a Active Face Images (동적얼굴영상으로부터 감정인식에 관한 연구)

  • Lee, Myung-Won;Kwak, Keun-Chang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.295-297
    • /
    • 2011
  • 본 논문에서는 동적얼굴영상으로부터 감정인식을 위해 벡터 표현 보다는 직접적인 텐서 표현으로 특징들을 추출하는 텐서 기반 다선형 주성분분석(MPCA: Multilinear Principal Component Analysis) 기법을 사용한다. 사람 6가지의 얼굴 표정을 사용하는데 한 사람의 각 표정마다 5프레임으로 묶어서 텐서 형태로 취하여 특징을 추출하고 인식한다. 시스템의 성능 평가는 CNU 얼굴 감정인식 데이터베이스를 이용하여 특징점 개수와 성능척도에 따른 실험을 수행하여 제시된 방법의 유용성에 관해 살펴본다.

An Implementation of The Image Searching System Corresponded with The Montage (몽타주와 일치하는 영상검색 시스템의 구현)

  • 최항영;남경선;윤태승;곽내정;안재형
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05d
    • /
    • pp.559-564
    • /
    • 2002
  • 본 논문에서는 범죄수사의 초동수사 기법으로 사용되고 있는 몽타주와 실물 사진과의 근사 영상 검색 알고리즘을 제안한다. 입력 몽타주를 얼굴인식 기법에 적용하여 이진영상화와 형태학적 필터로 영상의 잡음을 제거한 후 경계선을 추출하였다. 추출된 경계선 영상으로 레이블링 과정을 거친 후 얼굴의 중요 요소를 포함하는 특징얼굴을 구성한다. 특징얼굴은 웨이블릿 변환을 통해 다운 샘플링 된 LL대역의 계수로 변환되며, 고유값 연산을 통해 계수 매트릭스의 고유 값을 추출 한다. 입력 몽타주의 고유값은 같은 절차를 거친 실물 사진의 저장된 고유값과 계수의 분포를 비교한다. 실험 결과 몽타주와 유사한 실물 사진을 검색할 수 있었으며 영상의 크기 변화와 왜곡 및 압축에 견고한 비교 검색 결과를 얻었다.

  • PDF

Face Recognition using Effective Characteristical vectors and Edge Image Extraction Based on Haar Wavelet (Haar 웨이블릿에 기반한 에지검출과 효율적인 특징벡터을 이용한 얼굴 인식)

  • Choi, Gwang-Mi;Jung, Gug-Yeoung;Jung, Chai-Yeoung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.11a
    • /
    • pp.575-578
    • /
    • 2003
  • 본 논문에서는 얼굴영역을 검출하기위해 얼굴 피부색을 보다 효과적으로 모델링하기 위한 방법으로 피부색 특성을 고려하여 자기 성분을 제거한 Red, Blue, Green 채널을 모두 사용하는 Hue, Cb, Cg의 Multi-Channel 피부색 모델을 사용한다. 얼굴영역을 분리한 영상에 Haar 웨이블릿을 이용한 에지영상 추출과 얼굴영역의 특징벡터를 구하기 위하여 26개의 특징벡터를 사용한 효율적인 고차 국소 자동 상관함수를 사용하였다. 계산된 특징벡터는 BP 신경망의 학습을 통하여 얼굴인식을 위한 데이터로 사용된다. 시뮬레이션을 통해 제안된 알고리즘에 의한 인식률향상과 속도 향상을 입증한다.

  • PDF

A Study on Real-time Face Detection in Video (동영상에서 실시간 얼굴검출에 관한 연구)

  • Kim, Hyeong-Gyun;Bae, Yong-Guen
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.2
    • /
    • pp.47-53
    • /
    • 2010
  • This paper proposed Residual Image detection and Color Info using the face detection technique. The proposed technique was fast processing speed and high rate of face detection on the video. In addition, this technique is to detection error rate reduced through the calibration tasks for tilted face image. The first process is to extract target image from the transmitted video images. Next, extracted image processed by window rotated algorithm for detection of tilted face image. Feature extraction for face detection was used for AdaBoost algorithm.

A Facial Feature Detection using Light Compensation and Appearance-based Features (빛 보상과 외형 기반의 특징을 이용한 얼굴 특징 검출)

  • Kim Jin-Ok
    • Journal of Internet Computing and Services
    • /
    • v.7 no.3
    • /
    • pp.143-153
    • /
    • 2006
  • Facial feature detection is a basic technology in applications such as human computer interface, face recognition, face tracking and image database management. The speed of feature detection algorithm is one of the main issues for facial feature detection in real-time environment. Primary factors like a variation by lighting effect, location, rotation and complex background give an effect to decrease a detection ratio. A facial feature detection algorithm is proposed to improve the detection ratio and the detection speed. The proposed algorithm detects skin regions over the entire image improved by CLAHE, an algorithm for light compensation against varying lighting conditions. To extract facial feature points on detected skin regions, it uses appearance-based geometrical characteristics of a face. Since the method shows fast detection speed as well as efficient face-detection ratio, it can be applied in real-time application to face tracking and face recognition.

  • PDF

Face Recognition by Learning Data Configuration (학습데이터 구성에 의한 얼굴인식)

  • Cho, Jae-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.395-396
    • /
    • 2019
  • 최근 컴퓨터 하드웨어, 소프트웨어의 급속한 발전으로 상용화되면서 생체 인식 기술은 몇 년 전부터 점차 넓은 시장을 형성하고 있다. 본 논문에서는 얼굴 인식을 위하여 학습 데이터구성과 특징데이터에 따른 인식 정도를 파악하고 효과적인 방법으로 학습할 수 있는 방법을 제안하고자 한다. 실험결과, 원영상 그대로 인식하는 것 보다 특징 데이터를 구성하여 학습하는 것이 효율적임을 알 수 있다.

  • PDF

Automatic Face Extraction with Unification of Brightness Distribution in Candidate Region and Triangle Structure among Facial Features (후보영역의 밝기 분산과 얼굴특징의 삼각형 배치구조를 결합한 얼굴의 자동 검출)

  • 이칠우;최정주
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.1
    • /
    • pp.23-33
    • /
    • 2000
  • In this paper, we describe an algorithm which can extract human faces with natural pose from complex backgrounds. This method basically adopts the concept that facial region has the nearly same gray level for all pixels within appropriately scaled blocks. Based on the idea, we develop a hierarchial process that first, a block image data with pyramid structure of input image is generated, and some candidate regions for facial regions in the block image are Quickly determined, then finally the detailed facial features; organs are decided. To find the features easily, we introduce a local gray level transform which emphasizes dark and small regions, and estimate the geometrical triangle constraints among the facial features. The merit of our method is that we can be freed from the parameter assignment problem since the algorithm utilize a simple brightness computation, consequently robust systems not being depended on specific parameter values can be easily constructed.

  • PDF

Emotion Recognition and Expression using Facial Expression (얼굴표정을 이용한 감정인식 및 표현 기법)

  • Ju, Jong-Tae;Park, Gyeong-Jin;Go, Gwang-Eun;Yang, Hyeon-Chang;Sim, Gwi-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.295-298
    • /
    • 2007
  • 본 논문에서는 사람의 얼굴표정을 통해 4개의 기본감정(기쁨, 슬픔, 화남, 놀람)에 대한 특징을 추출하고 인식하여 그 결과를 이용하여 감정표현 시스템을 구현한다. 먼저 주성분 분석(Principal Component Analysis)법을 이용하여 고차원의 영상 특징 데이터를 저차원 특징 데이터로 변환한 후 이를 선형 판별 분석(Linear Discriminant Analysis)법에 적용시켜 좀 더 효율적인 특징벡터를 추출한 다음 감정을 인식하고, 인식된 결과를 얼굴 표현 시스템에 적용시켜 감정을 표현한다.

  • PDF