• Title/Summary/Keyword: 얼굴 특징추출

Search Result 588, Processing Time 0.032 seconds

Tracking and Detection of Face Region in Long Distance Image (실시간 원거리 얼굴영역 검출 및 추적)

  • Park, Sung-Jin;Han, Sang-Il;Cha, Hyung-Tai
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2005.11a
    • /
    • pp.201-204
    • /
    • 2005
  • 동영상에서 얼굴을 인식하는 기술은 Eigen-Face를 이용하는 방법, 템플릿을 이용하는 방법 등과 같이 다양한 방법이 연구되어지고 있다. 하지만 이들 기법들이 모두 동영상에서 얼굴영역을 검출했을지는 모르지만 얼굴영역이 영상에서 차지하는 위치와 크기를 일정하게 제한하고 있다. 그 중에서 입력되는 영상이 촬영 도구로부터 제한된 거리에서 촬영되어 얻어 지거나 실험을 통해 얻어진 영상을 이용하여 얼굴영역을 검출한다. 하지만 실제 다양한 응용분야에서 얼굴영역 검출 기술을 이용하기 위해서는 이러한 제한된 입력 영상뿐만이 아니라 어떠한 환경에서의 입력 영상에서도 얼굴영역을 검출할 수 있어야 한다. 본 논문은 근거리뿐만이 아니라 원거리에서 획득한 영상에서도 얼굴영역을 검출할 수 있으며, 얼굴의 특징 추출과 예측기법을 통하여 보다 향상된 얼굴영역 검출을 할 수 있다. 움직임 정보와 얼굴색상정보를 이용하여 8x8블록을 만들고 이런 블록 정보들을 특정한 규칙에 적용함으로써 얼굴영역을 후보를 검출하게 된다. 그리고 후보 얼굴영역의 고유한 특징들을 추출하고 칼만 필터를 적용한 예측기법을 통하여 얼굴영역 판단하게 된다.

  • PDF

A Study on A Biometric Bits Extraction Method of A Cancelable face Template based on A Helper Data (보조정보에 기반한 가변 얼굴템플릿의 이진화 방법의 연구)

  • Lee, Hyung-Gu;Kim, Jai-Hie
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.83-90
    • /
    • 2010
  • Cancelable biometrics is a robust and secure biometric recognition method using revocable biometric template in order to prevent possible compromisation of the original biometric data. In this paper, we present a new cancelable bits extraction method for the facial data. We use our previous cancelable feature template for the bits extraction. The adopted cancelable template is generated from two different original face feature vectors extracted from two different appearance-based approaches. Each element of feature vectors is re-ordered, and the scrambled features are added. With the added feature, biometric bits string is extracted using helper data based method. In this technique, helper data is generated using statistical property of the added feature vector, which can be easily replaced with straightforward revocation. Because, the helper data only utilizes partial information of the added feature, our proposed method is a more secure method than our previous one. The proposed method utilizes the helper data to reduce feature variance within the same individual and increase the distinctiveness of bit strings of different individuals for good recognition performance. For a security evaluation of our proposed method, a scenario in which the system is compromised by an adversary is also considered. In our experiments, we analyze the proposed method with respect to performance and security using the extended YALEB face database

A study of face detection using color component (색상요소를 고려한 얼굴검출에 대한 연구)

  • 이정하;강진석;최연성;김장형
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.240-243
    • /
    • 2002
  • In this paper, we propose a face region detection based on skin-color distribution and facial feature extraction algorithm in color still images. To extract face region, we transform color using general skin-color distribution. Facial features are extracted by edge transformation. This detection process reduces calculation time by a scale-down scanning from segmented region. we can detect face region in various facial Expression, skin-color deference and tilted face images.

  • PDF

Gender Classification using Non-Negative Matrix Analysis with Sparse Logistic Regression (Sparse Logistic Regression 기반 비음수 행렬 분석을 통한 성별 인식)

  • Hur, Dong-Cheol;Wallraven, Christian;Lee, Seong-Whan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.373-376
    • /
    • 2011
  • 얼굴 영상에서 구성요소(눈썹, 눈, 코, 입 등)의 존재에 따라 보는 사람의 얼굴 인식 정확도는 큰 영향을 받는다. 이는 인간의 뇌에서 얼굴 정보를 처리하는 과정은 얼굴 전체 영역 뿐만 아니라, 부분적인 얼굴 구성요소의 특징들도 고려함을 말한다. 비음수 행렬 분해(NMF: Non-negative Matrix Factorization)는 이러한 얼굴 영역에서 부분적인 특징들을 잘 표현하는 기저영상들을 찾아내는데 효과적임을 보여주었으나, 각 기저영상들의 중요도는 알 수 없었다. 본 논문에서는 NMF로 찾아진 기저영상들에 대응되는 인코딩 정보를 SLR(Sparse Logistic Regression)을 이용하여 성별 인식에 중요한 부분 영역들을 찾고자 한다. 실험에서는 주성분분석(PCA)과 비교를 통해 NMF를 이용한 기저영상 및 특징 벡터 추출이 좋은 성능을 보여주고, 대표적 이진 분류 알고리즘인 SVM(Support Vector Machine)과 비교를 통해 SLR을 이용한 특징 벡터 선택이 나은 성능을 보여줌을 확인하였다. 또한 SLR로 확인된 각 기저영상에 대한 가중치를 통하여 인식 과정에서 중요한 얼굴 영역들을 확인할 수 있다.

A Study on The Extraction of the Region and The Recognition of The State of Eyes (눈영역 추출과 개폐상태 인식에 관한 연구)

  • 김도형;이학만;박재현;차의영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.532-534
    • /
    • 2001
  • 본 논문에서는 다양한 배경을 가지는 얼굴 영상에서 눈의 위치를 추출하고 누의 개폐 상태를 인식하는 방법에 대하여 제시한다. 얼굴 요소 중에서 눈은 얼굴 인식 분야에 있어서 주요한 특징을 나타내는 주 요소이며, 눈의 개폐 상태 인식은 인간의 물리적, 생체적 신호 감지 및 표정인식에도 유용하게 사용될 수 있다. 본 논문에서는 후부영역을 강조하기 위한 전처리 과정을 수행하고 템플릿 매칭 방법을 사용하여 후부 영역을 추출한다. 추출된 1차 후부 영역들은 설정된 병합식을 사용하여 병합되며, 기하학적 사전지식과 Matching Value를 기반으로 최종 눈후보 영역을 추출한다. 검출된 눈 후보 영역은 검출영역 전처리와 특징점 산출 과정을 거쳐 최종적으로 개폐 판별식을 통해 눈의 개폐상태를 인식하게 된다. 제안한 방법은 눈위치 추출과 개폐인식에서 모두 높은 인식률을 보였으며 향후 운전자의 졸음인식 및 환자 감시장치 등 여러 응용에서 사용될 수 있다.

  • PDF

3D Face Recognition using Projection Vectors for the Area in Contour Lines (등고선 영역의 투영 벡터를 이용한 3차원 얼굴 인식)

  • 이영학;심재창;이태홍
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.2
    • /
    • pp.230-239
    • /
    • 2003
  • This paper presents face recognition algorithm using projection vector reflecting local feature for the area in contour lines. The outline shape of a face has many difficulties to distinguish people because human has similar face shape. For 3 dimensional(3D) face images include depth information, we can extract different face shapes from the nose tip using some depth values for a face image. In this thesis deals with 3D face image, because the extraction of contour lines from 2 dimensional face images is hard work. After finding nose tip, we extract two areas in the contour lilies from some depth values from 3D face image which is obtained by 3D laser scanner. And we propose a method of projection vector to localize the characteristics of image and reduce the number of index data in database. Euclidean distance is used to compare of similarity between two images. Proposed algorithm can be made recognition rate of 94.3% for face shapes using depth information.

  • PDF

Face Recognition Using DCT/LDA (DCT/LDA를 이용한 얼굴 인식)

  • 이흔진;박현선;김경수;김희정;정병희;하명환;김회율
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2024-2027
    • /
    • 2003
  • 본 논문에서는 얼굴 인식 분야에서 사용되는 PCA/LDA 알고리즘을 대신하기 위해 DCT/LDA 알고리즘을 제안하였다. PCA/LDA를 이용한 얼굴 인식의 경우 PCA 를 이용하여 얼굴 영상을 적은 수의 특징 값으로 표현한 다음 LDA를 수행한다. 그러나 PCA는 트레이닝 과정의 계산량이 많고 트레이닝 셋이 변할 때마다 기저 벡터가 변화한다. PCA/LDA의 단점을 개선하기 위해 계산량이 적고 기저 벡터가 일정한 DCT의 계수를 사용한다. DCT/LDA를 사용할 경우 특징 값을 빠르게 추출하면서 PCP/LDA와 유사한 성능을 얻을 수 있다. 실험을 통하여 포즈 변화와 조명 변화가 있는 얼굴 데이터 셋에서 최고 97.8%의 인식률을 보였다.

  • PDF

A Study on Face Recognition by using Karhunen Loeve Transform (KLT를 이용한 얼굴인식에 관한 연구)

  • Kang, Chang-Soo;Jeon, Hyung-Joon
    • 전자공학회논문지 IE
    • /
    • v.43 no.1
    • /
    • pp.25-31
    • /
    • 2006
  • In this paper, This study proposes a method that use the whole face as features by using a color information and KLT that overcome the weak points of existing face extraction and face recognition. The significant information among the features of face is extracted by PCA which uses KLT. In this paper, you will find that the recognition efficiency is over 90% for the faces that have various size and angle by proposing the face recognition method using color information and the KLT.

Facial Expression Recognition without Neutral Expressions (중립표정에 무관한 얼굴표정 인식)

  • Shin Young-Suk
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.301-303
    • /
    • 2006
  • 본 논문은 중립 표정과 같은 표정 측정의 기준이 되는 단서 없이 다양한 내적상태 안에서 얼굴표정을 인식할 수 있는 개선된 시스템을 제안한다. 표정정보를 추출하기 위한 전처리작업으로, 백색화(whitening) 단계가 적용되었다. 백색화 단계는 영상데이터들의 평균값이 0이며, 단위분산값으로 균일한 분포를 갖도록 하여 조명 변화에 대한 민감도를 줄인다. 백색화 단계 수행 후 제 1 주성분이 제외된 나머지 주성분들로 이루어진 PCA표상을 표정정보로 사용함으로써 중립 표정에 대한 단서 없이 얼굴표정의 특징추출을 가능하게 하였다. 본 실험 결과는 83개의 내적상태와 일치되는 다양한 얼굴표정들에서 임의로 선택된 표정영상들의 얼굴표정 인식을 수행함으로써 다양하고 자연스런 얼굴 표정인식을 가능하게 하였다.

  • PDF

Video-based Face Recognition Using Multilinear Principal Component Analysis of Tensor Faces (텐서얼굴의 다선형 주성분 분석기법을 이용한 동영상 기반 얼굴 인식)

  • Han, Yun-Hee;Kwak, Keun-Chang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.565-567
    • /
    • 2010
  • 일반적으로 얼굴 인식 방법에는 템플릿 기반 통계적 기법들이 사용되고 있다. 이 방법들은 2차원 영상을 고차원 벡터로 표현하여 특징을 추출한다. 그러나 많은 이미지와 비디오 데이터는 본래 텐서로 표현된다. 따라서, 본 논문에서는 벡터 표현보다는 직접적인 텐서 표현으로 특징들을 추출하기 위해 텐서 얼굴의 다선형 주성분 분석(MPCA: Multilinear Principal Component Analysis) 기법을 이용한 동영상 기반 얼굴인식에 대해 다룬다. 마지막으로, u-로봇 테스트베드 환경에서 구축된 얼굴 인식 데이터 베이스를 이용하여 제안된 방법과 기존 방법들의 인식처리시간과 성능을 비교한다.