Journal of the Korea Institute of Information and Communication Engineering
/
v.7
no.6
/
pp.1312-1317
/
2003
This paper presents an integrated approach to unconstrained face recognition in arbitrary scenes. The front end of the system comprises of a scale and pose tolerant face detector. Scale normalization is achieved through novel combination of a skin color segmentation and log-polar mapping procedure. Principal component analysis is used with the multi-view approach proposed in[10] to handle the pose variations. For a given color input image, the detector encloses a face in a complex scene within a circular boundary and indicates the position of the nose. Next, for recognition, a radial grid mapping centered on the nose yields a feature vector within the circular boundary. As the width of the color segmented region provides an estimated size for the face, the extracted feature vector is scale normalized by the estimated size. The feature vector is input to a trained neural network classifier for face identification. The system was evaluated using a database of 20 person's faces with varying scale and pose obtained on different complex backgrounds. The performance of the face recognizer was also quite good except for sensitivity to small scale face images. The integrated system achieved average recognition rates of 87% to 92%.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2007.04a
/
pp.386-389
/
2007
EBGM은 자세와 포즈, 조명 변화에 강인한 얼굴 인식 기법중의 하나이다. 하지만 EBGM을 통한 얼굴 인식 시스템은 얼굴의 특징점을 추출하기 위해 주어지는 초기값에 상당한 영향을 받는다. 이러한 문제를 해결하기 위해서 얼굴의 윤곽 추출에 우수한 성능을 보이는 AAM을 통하여 EBGM의 초기값을 주고 EBGM을 통하여 개선하는 방법을 제안하였었다. 본 논문에서는 등록자마다 다른 경계값을 갖는 방법을 제안한다. 기존의 경계값에 비해 성능의 향상이 어느 정도 이뤄지는가에 대해 다룰 것이다.
Biometrics is essential for person identification because of its uniqueness from each individuals. Face recognition technology has advantage over other biometrics because of its convenience and non-intrusive characteristics. In this paper, we will present a overview of face recognition technology including face detection, feature extraction, and face recognition system. For face detection, we will describe template based method and face component based approach. PCA and LDA approach will be discussed for feature extraction, and nearest neighbor classifiers -will be covered for matching. Large database and the standardized performance evaluation methodology is essential in order to support state-of-the-art face recognition system. Also, 3D based face recognition technology is the key solution for the pose, lighting and expression variations in many applications.
Journal of the Korea Institute of Information and Communication Engineering
/
v.7
no.4
/
pp.705-711
/
2003
An automatic face and facial feature points(FFPs) detection system is proposed. A face is represented as a graph where the nodes are placed at facial feature points(FFPs) labeled by their Gabor features and the edges are describes their spatial relations. An innovative flexible feature matching is proposed to perform features correspondence between models and the input image. This matching model works likes random diffusion process in !be image space by employing the locally competitive and globally corporative mechanism. The system works nicely on the face images under complicated background, pose variations and distorted by facial accessories. We demonstrate the benefits of our approach by its implementation on the face identification system.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2002.05a
/
pp.608-612
/
2002
An automatic face and facial feature points(FFPs) detection system is proposed. A face is represented as a graph where the nodes are placed at facial feature points(FFPs) labeled by their Gabor features md the edges are describes their spatial relations. An innovative flexible feature matching is proposed to perform features correspondence between models and the input image. This matching model works likes random diffusion process in the image spare by employing the locally competitive and globally corporative mechanism. The system works nicely on the face images under complicated background, pose variations and distorted by facial accessories. We demonstrate the benefits of our approach by its implementation on the fare identification system.
Kim, Kwang-Soo;Boo, Deok-Hee;Ahn, Jung-Ho;Kwak, Soo-Yeong;Byun, Hye-Ran
Journal of KIISE:Software and Applications
/
v.34
no.7
/
pp.681-687
/
2007
Face recognition technique is very popular for a personal information security and user identification in recent years. However, the face recognition system is very hard to be implemented due to the difficulty where change in illumination, pose and facial expression. In this paper, we consider that an illumination change causing the variety of face appearance, virtual image data is generated and added to the D-LDA which was selected as the most suitable feature extractor. A less sensitive recognition system in illumination is represented in this paper. This way that consider nature of several illumination directions generate the virtual training image data that considered an illumination effect of the directions and the change of illumination density. As result of experiences, D-LDA has a less sensitive property in an illumination through ORL, Yale University and Pohang University face database.
얼굴 영상에서 사람의 눈을 검출하는 것은 얼굴 인식의 전체적인 성능을 좌우하는 매우 중요한 사항이다. 눈 검출은 얼굴 영상의 특징이 변하기 때문에 항상 신뢰할 수 있는 결과를 얻는 것은 어려우며, 또한 실시간 얼굴 인식에 응용되기 위해서는 빠른 연산 시간도 고려되어야 한다. 본 논문에서는 빠르고 정확한 새로운 눈 검출 방법을 제안하다. 첫째, Ada-Boosting 알고리즘을 사용하여 얼굴 영역을 검출한다. 둘째, Intensity valley와 edge 정보를 사용하여 얼굴 영상의 회전(Rotation in plane)을 보상한다. 셋째, Intensity edge정보를 사용하여 두 눈의 수직, 수평라인을 검출한다. 넷째, 일반적인 (generic) 사람 눈의 패턴을 이용하여 고안된 Filter로 두 눈의 위치를 검출한다. 본 논문을 통하여 새로 제안된 알고리즘에 대한 논의와 실험 결과를 통해 새로운 알고리즘이 눈 검출에 적합함을 제시한다.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.37
no.2
/
pp.31-43
/
2000
This paper presents a novel algorithm lot extraction of the eye and mouth fields (facial features) from 2D gray level face images. First of all, it has been found that Eigenfeatures, derived from the eigenvalues and the eigenvectors of the binary edge data set constructed from the eye and mouth fields are very good features to locate these fields. The Eigenfeatures, extracted from the positive and negative training samples for the facial features, ate used to train a MultiLayer Perceptron(MLP) whose output indicates the degree to which a particular image window contains the eye or the mouth within itself. Second, to ensure robustness, the ensemble network consisting of multiple MLPs is used instead of a single MLP. The output of the ensemble network becomes the average of the multiple locations of the field each found by the constituent MLPs. Finally, in order to reduce the computation time, we extracted the coarse search region lot eyes and mouth by using prior information on face images. The advantages of the proposed approach includes that only a small number of frontal faces are sufficient to train the nets and furthermore, lends themselves to good generalization to non-frontal poses and even to other people's faces. It was also experimentally verified that the proposed algorithm is robust against slight variations of facial size and pose due to the generalization characteristics of neural networks.
Park Young-Kyung;Seo Hae-Jong;Min Kyoung-Won;Kim Joong-Kyu
The KIPS Transactions:PartB
/
v.13B
no.3
s.106
/
pp.283-294
/
2006
In this paper, we propose a real-time face detection/tracking methodology with Haar wavelets and skin color. The proposed method boosts face detection and face tracking performance by combining skin color and Haar wavelets in an efficient way. The proposed method resolves the problem such as rotation and occlusion due to the characteristic of the condensation algorithm based on sampling despite it uses same features in both detection and tracking. In particular, it can be applied to a variety of applications such as face recognition and facial expression recognition which need an exact position and size of face since it not only keeps track of the position of a face, but also covers the size variation. Our test results show that our method performs well even in a complex background, a scene with varying face orientation and so on.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.3
no.2
/
pp.12-17
/
2010
An automatic facial feature points(FFPs) detection system is proposed. A face is represented as a graph where the nodes are placed at facial feature points(FFPs) labeled by their Gabor features and the edges are describes their spatial relations. An innovative flexible feature matching is proposed to perform features correspondence between models and the input image. This matching model works likes random diffusion process in the image space by employing the locally competitive and globally corporative mechanism. The system works nicely on the face images under complicated background, pose variations and distorted by facial accessories. We demonstrate the benefits of our approach by its implementation on the system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.