본 논문에서는 얼굴의 특징 추출을 이용해서 캐리커쳐를 자동으로 생성하는 알고리즘을 제안한다. 제안된 방법은 사진이나 카메라를 이용해서 입력된 영상으로부터 색상정보를 이용하여 얼굴영역을 검출하고 얼굴의 기하학적인 구조를 이용해서 유전자 알고리즘의 추정 파라미터를 설정하여 최적의 특징 점의 위치를 검출한다. 검출된 특징 점 위치를 이용하여 눈, 코, 입, 눈썹, 머리카락 등 얼굴의 특징이 되는 구성요소를 추출한다. 마지막으로 얼굴의 윤곽선을 구한 다음 추출된 얼굴의 구성요소들을 합성하여 간단하면서도 개인의 특징을 잘 반영할 수 있는 캐리커쳐를 생성한다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2005.04a
/
pp.441-445
/
2005
얼굴인식기술이 인증 및 보안을 위한 도구로 활용되고 있지만 입력영상의 상태 즉, 복잡한 배경과 조명환경에 따라 적용할 수 있는 범위가 제약적일 수밖에 없다. 본 논문에서는 이러한 제약을 최소화하기 위한 방법과 좀 더 정확한 얼굴 영역 검출을 위한 기법을 제시한다. 제안된 방법은 움직임에 기반 한 에지 차영상을 이용하여 얼굴 윤곽을 검출한 후 이를 X와 Y축의 프로파일을 이용하여 얼굴영역을 예측한다. 그리고 얼굴의 피부 색상 정보와 특징 구성요소인 눈, 코, 입 등의 특징적인 요소의 에지정보를 이용하여 수직적으로 이를 구분한 후 얼굴인지 아닌지를 판별한다. 제안된 알고리즘은 다양한 배경 및 조명등의 많은 환경적 요인에 따른 입력영상에서도 매우 안정적으로 적용됨을 실험을 통해 확인하였다.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.41
no.2
/
pp.131-136
/
2004
According to development of media, various information is recorded in media, expression is one during interesting information. Because expression includes of relationship of human inside. Intention of inside is expressed by gesture, but expression has more information. And, expression can manufacture voluntarily, include plan of inside on the man. Also, expression has unique character in a person, have alliance that do division possibility. In this paper, to analyze expression of USB camera animation, wish to detect facial building block. Because characteristic point by person's expression change exists on face component. For component detection, in animation one frame with Capture, grasp facial position, and separate face area, and detect characteristic points of face component.
Journal of the Korea Academia-Industrial cooperation Society
/
v.8
no.2
/
pp.267-272
/
2007
This paper proposes a new approach fur the detection of facial feature regions using the characteristic of DCT(discrete cosine transformation) thatconcentrates the energy of an image into lower frequency coefficients. Since the facial features are pertained to relatively high frequency in a face image, the inverse DCT after removing the DCT's coefficients corresponding to the lower frequencies generates the image where the facial feature regions are emphasized. Thus the facial regions can be easily segmented from the inversed image using any differential operator. In the segmented region, facial features can be found using face template. The proposed algorithm has been tested with the image MIT's CBCL DB and the Yale facedatabase B. The experimental results have shown superior performance under the variations of image size and lighting condition.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.2
no.3
/
pp.79-86
/
2009
This study proposed a method of detecting the facial area by calculating Euclidian distances among skin color elements and extracting the characteristics of the face. The proposed algorithm is composed of light calibration and face detection. The light calibration process performs calibration for the change of light. The face detection process extracts the area of skin color by calculating Euclidian distances to the input images using as characteristic vectors color and chroma in 20 skin color sample images. From the extracted facial area candidate, the eyes were detected in space C of color model CMY, and the mouth was detected in space Q of color model YIQ. From the extracted facial area candidate, the facial area was detected based on the knowledge of an ordinary face. When an experiment was conducted with 40 color images of face as input images, the method showed a face detection rate of 100%.
In this Paper, we propose the new face detection and tracking method based on template matching for real-time applications such as, teleconference, telecommunication, front stage of surveillance system using face recognition, and video-phone applications. Since the main purpose of paper is to track a face regardless of various environments, we use template-based face tracking method. To generate robust face templates, we apply wavelet transform to the average face image and extract three types of wavelet template from transformed low-resolution average face. However template matching is generally sensitive to the change of illumination conditions, we apply Min-max normalization with histogram equalization according to the variation of intensity. Tracking method is also applied to reduce the computation time and predict precise face candidate region. Finally, facial components are also detected and from the relative distance of two eyes, we estimate the size of facial ellipse.
Proceedings of the Korean Information Science Society Conference
/
2000.10b
/
pp.425-427
/
2000
얼굴 표정은 사람의 감정을 표현함과 동시에 그것을 이해할 수 있는 중요한 수단이다. 최근 이러한 얼굴 표정의 자동인식과 추적을 위한 연구가 많이 진행되고 있다. 본 연구에서는 대략적인 얼굴영역을 설정하여 얼굴의 표정을 나타내는 표정요소들을 찾아낸 후, 각 요소의 특징점을 추출하고 추적하는 방법을 제시한다. 제안하는 시스템의 개요는 입력영상의 첫 프레임에서 얼굴영역 및 특징점을 찾고, 연속되는 프레임에서 반복적으로 이를 추적한다. 특징점 추출과 추적에는 템플릿 매칭과 Canny 경계선 검출기, Gabor 웨이블릿 변환을 사용하였다.
Proceedings of the Korean Information Science Society Conference
/
2003.04c
/
pp.298-300
/
2003
동영상이나 정지영상에서 사람의 얼굴을 검출 및 인식을 하는 여러 가지 알고리즘이 소개되고 있다. 본 논문에서는 신경망(Neural Network)과 얼굴의 기하학적 특징 중에 하나인 눈과 입을 사용하여 얼굴 영역을 추출하는 방법을 사용한다 신경망은 얼굴 인식을 비롯한 여러 분야에서 쓰이는 좋은 방법 중의 하나 이지만 신경망이 가지고 있는 특성상 많은 오차를 가질 수 있기 때문에 얼굴을 구성하고 있는 요소인 눈과 입을 사용해서 오차를 제거하는 방법을 제안한다.
Proceedings of the Korea Contents Association Conference
/
2004.11a
/
pp.321-326
/
2004
Many researchers have been studied texturing the 3D face model with front and side pictures of ordinary person. It is very important to exactly detect the psition of eyes, nose, mouth of a human from the side pictures. Previous results first found the position of eye, nose, or mouth and then extract the other face components using their positional correlation. The detection results greatly depend on the correct extraction of the neck from the images. Therefore, we present a new algorithm that remove the neck completely and thus improve the detection rates of face components. To do this, we will use the RGB values and its differences.
Proceedings of the Korean Society of Precision Engineering Conference
/
2004.05a
/
pp.27-27
/
2004
이 논문에서는 이동 로봇 플랫폼 위에 장착되는 비전 시스템을 이용하여 대상 사람의 얼굴위치를 검출, 사용자 인식을 수행하는 방법론을 제시한다. 본 연구에서 적용대상으로 하는 이동로봇은 실내에서 사용 가능한 홈 서비스 로봇(Hombot-2)으로 인간-로봇 상호작용 (human-robot interaction, HCI)이 중요한 기능 중에 하나이다. 로봇에 장착된 스테레오 비전 카메라에서 획득하게 되는 얼굴 영상은 임의로 움직이는 로봇 작업 반경 밖에 있는 사용자의 특성 상 얼굴 영상이 비교적 작게 얻어지고 정면얼굴에서 벗어난 가변적 얼굴 자세변화를 갖게 된다.(중략)
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.