• Title/Summary/Keyword: 얼굴영역

Search Result 957, Processing Time 0.029 seconds

Implementation of fast facial image detecting system based on GPU (GPU 기반 고속 얼굴 영역 검출 구현)

  • Lee, Seong-Yeon;Park, Seong-Mo;Kim, Jong-Nam
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.130-131
    • /
    • 2009
  • 얼굴 영역 검출은 얼굴 인식, 얼굴 복원 등 산업 및 학술 여러 분야에 걸쳐 사용되는 기술이다. 고속의 얼굴 영역 검출을 위하여 고성능 하드웨어를 사용하거나 고속 알고리즘을 사용하는데, 본 논문에서는 GPU 기반 프로그래밍 기법인 CUDA를 이용하여 고속 얼굴 영역 검출 시스템을 구현하였다. 기존의 얼굴 영역 검출 시스템은 처리 속도의 한계로 인해 고속의 검출이 어려웠을 뿐 아니라 고속으로 동작하도록 하려면 고가의 시스템 부품을 사용하여야 하므로 사용자에게 부담을 안겨주었다. 그러나 nVidia 등 그래픽 칩셋 제조업체들이 속속 내놓고 있는 GPGPU 기술을 이용하여 얼굴 영역 검출 시스템을 구현할 경우 보다 저렴한 가격에 보다 뛰어난 성능을 가질 수 있도록 할 수 있다. 따라서 본 논문에서는 이러한 범용 GPU 사용 기술 중 하나인 nVidia의 CUDA를 이용하여 얼굴 검출 시스템을 구현하였다. 실험 결과 GPU 기반 시스템은 CPU 기반 시스템보다 고속으로 검출이 가능함을 확인하였다. 제안하는 방법은 nVidia 그래픽 카드가 설치된 시스템에서 고속의 감시카메라 서버 등으로 적용이 가능하다.

A Study on Frontal Face Detection Using Wavelet Transform (Wavelet 변환을 이용한 정면 얼굴 검출에 관한 연구)

  • Rhee Sang-Brum;Choi Young-Kyoo
    • Journal of Internet Computing and Services
    • /
    • v.5 no.1
    • /
    • pp.59-66
    • /
    • 2004
  • Symmetry region searching can extract face region without a prior information in an image by using symmetric. However, this method requires a plenty of the computation time because the mask size to process symmetry region searching must be larger than the size of object such as eye, nose and mouth in face. in this paper, it proposed symmetric by using symmetry region searching and Wavelet Transform to reduce computation time of symmetry region searching, and It was applied to this method in an original image. To extract exact face region, we also experimented face region searching by using domain division in extraction region.

  • PDF

Development of Reduction Algorithm for Face Detection Error Using MCT and Neural Network (MCT와 신경망을 이용한 얼굴 오검출 감소 알고리즘 개발)

  • Ra, Seung-Tak;Lee, Seung-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.700-703
    • /
    • 2016
  • OpenCV(Open Computer Vision)에서 제공하는 얼굴 검출 알고리즘은 Haar-like feature와 Cascade 방식을 이용하여 얼굴의 패턴을 찾아내 얼굴을 검출한다. 그러나 우연히 얼굴이 아닌 곳이 얼굴과 유사한 패턴일 경우, 얼굴로 인식하는 오류를 범하게 된다. 따라서 본 논문은 MCT(Modified Census Transform)와 신경망을 이용하여 잘못된 얼굴 검출 영역을 감소시키는 알고리즘을 제안한다. MCT는 다양한 조명 조건에서도 강인한 얼굴 영상의 지역적 구조 특징을 추출하기 위하여 사용되고, 신경망 알고리즘은 Haar-Cascade 알고리즘의 얼굴 검출 방법으로 검출된 영역이 실제로 얼굴인지 아닌지를 판단하기 위하여 사용된다. 실험에서 사용된 6개의 데이터들은 인터넷에서 수집한 것으로서, Haar-Cascade 알고리즘의 얼굴 검출 방법으로 얼굴을 검출하였을 때 오검출된 영역이 1개 이상 존재한다. 본 논문에서 제안한 알고리즘으로 실험한 결과, Haar-Cascade 알고리즘의 얼굴 검출 방법에 비하여 오검출된 영역이 감소된 것을 확인할 수 있었다.

Illumination Robust Extraction of Facial Region including Hair Method (조명에 강인한 머리카락을 포함한 얼굴 영역 추출 방법)

  • Park, Sung-Soo;Lee, Hyung-Soo;Kim, Dai-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10c
    • /
    • pp.415-418
    • /
    • 2007
  • 본 논문은 머리카락을 포함한 얼굴 영역 추출에 관한 것으로서, 보다 구체적으로는 조명변화에도 강인 한 얼굴영역 추출방법과 다양한 머리카락의 모양과 색의 변화에도 신뢰성 있는 머리카락 추출 방법에 관한 것이다. 일반적으로 얼굴영상은 개인의 특징을 잘 표현할 수 있는 정보로써, 영상에서 얼굴 영역을 추출하여 이를 실제 얼굴영상정보를 이용한 얼굴인식, 관상정보 서비스를 위한 전처리, 기반기술을 제공하고, 실사 캐릭터 제작에도 바로 적용될 수 있다. 기존의 템플리트 매칭, 곡선추적 알고리즘 등과의 같은 추출방법에서는 얼굴크기 변화, 안경 및 장신구의 착용 여부 그리고 조명의 변화에 따라 얼굴영역 추출하는 처리속도가 많이 걸리고, 성능이 크게 저하되는 문제점이 있다. 상기한 바와 같이 종래의 문제점을 개선하기 위하여, 본 논문에서는 얼굴의 크기변화, 안경 및 장신구의 착용 여부 그리고 조명의 변화에서도 얼굴 영역을 잘 추출 할 있는 방법과 다양한 머리카락의 색, 형태 변화에도 신뢰성 있는 머리카락 추출방법을 제안하였다.

  • PDF

Passport Recognition using PCA-based Face Verification and SOM Algorithm (PCA 기반 얼굴 인증과 SOM 알고리즘을 이용한 여권 인식)

  • Lee Sang-Soo;Jang Do-Won;Kim Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.285-290
    • /
    • 2006
  • 본 논문에서는 출입국자 관리의 효율성과 체계적인 출입국 관리를 위하여 여권 코드를 자동으로 인식하고 위조 여권을 판별할 수 있는 여권 인식 및 얼굴 인증 방법을 제안한다. 본 논문의 구성은 여권 인식과 얼굴 인증 부분으로 구성되며, 여권 인식 부분에서는 소벨 연산자, 수평 최소값 필터 등을 적용한 후, 8 방향 윤곽선 추적 알고리즘을 적용하여 코드의 문자열 영역을 추출하고 기울기를 보정한다. 추출된 문자열은 반복 이진화 방법을 적용하여 코드의 문자열 영역을 이진화 한다. 이진화된 문자열 영역에 대해 8 방향 윤곽선 추적 알고리즘을 적용하여 개별 코드를 추출한 후에 SOM(Self-Organizing Maps) 알고리즘을 적용하여 여권 코드를 인식한다. 얼굴 인증 부분에서는 여권 사진 영역의 특징을 이용하여 얼굴 후보 영역을 추출한 후, RGB와 YCbCr 색공간에서 피부색 정보를 이용하여 얼굴 영역을 추출한다. 추출된 얼굴 영역은 PCA(Principal Component Analysis) 알고리즘을 적용하여 특징 벡터를 구하고 여권 코드가 인식된 결과를 바탕으로 여권 소지자의 데이터 베이스에 있는 얼굴 영상의 특징벡터와의 거리 값을 계산하여 사진 위조 여부를 판별한다. 제안된 여권 인식 및 얼굴 인증 방법의 성능 평가를 위하여 원본 여권의 얼굴 부분을 위조한 여권과 기울어진 여권 영상을 대상으로 실험한 결과, 제안된 방법이 여권의 코드 인식 및 얼굴 인증에 있어서 우수한 성능이 있음을 확인하였다.

  • PDF

A Facial Feature Area Extraction Method for Improving Face Recognition Rate in Camera Image (일반 카메라 영상에서의 얼굴 인식률 향상을 위한 얼굴 특징 영역 추출 방법)

  • Kim, Seong-Hoon;Han, Gi-Tae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.5
    • /
    • pp.251-260
    • /
    • 2016
  • Face recognition is a technology to extract feature from a facial image, learn the features through various algorithms, and recognize a person by comparing the learned data with feature of a new facial image. Especially, in order to improve the rate of face recognition, face recognition requires various processing methods. In the training stage of face recognition, feature should be extracted from a facial image. As for the existing method of extracting facial feature, linear discriminant analysis (LDA) is being mainly used. The LDA method is to express a facial image with dots on the high-dimensional space, and extract facial feature to distinguish a person by analyzing the class information and the distribution of dots. As the position of a dot is determined by pixel values of a facial image on the high-dimensional space, if unnecessary areas or frequently changing areas are included on a facial image, incorrect facial feature could be extracted by LDA. Especially, if a camera image is used for face recognition, the size of a face could vary with the distance between the face and the camera, deteriorating the rate of face recognition. Thus, in order to solve this problem, this paper detected a facial area by using a camera, removed unnecessary areas using the facial feature area calculated via a Gabor filter, and normalized the size of the facial area. Facial feature were extracted through LDA using the normalized facial image and were learned through the artificial neural network for face recognition. As a result, it was possible to improve the rate of face recognition by approx. 13% compared to the existing face recognition method including unnecessary areas.

Region-of-Interest Detection from a Facial Image Using Active Model (동적 모델을 이용한 얼굴 영상에서의 관심 영역 추출)

  • 이형일;김경환
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.343-345
    • /
    • 2001
  • 본 논문에서는 얼굴 인식 시스템에서 정면 얼굴 영상의 관심 영역을 추출하는 효율적인 방법을 소개한다. 얼굴 인식 시스템은 얼굴 요소의 특징 을 이용하여 자동으로 얼굴을 구별하는 시스템이며, 얼굴 요소로는 눈, 코, 입과 눈썹을 주로 사용한다. 본 논문에서는 동적 모델을 이용하여 눈과 입을 관심영역으로 하여 이 영역을 세 단계로 나누어 추출한다. 첫 번째로 전체 얼굴 모델을 이용하여 similarity 변환을 적용하여 얼굴의 대략적인 위치를 찾는다. 두 번째 단계에서는 얼굴 근처에서 각각의 눈, 입 모델을 비선형 변환을 적용하여 정확한 눈과 입을 찾는다. 최종 단계에서는 이렇게 맞춘 모델로부터 전체 모델을 변형시킨 후에 변형전과 후의 적합성을 판단하여 최종 위치를 정한다. 제안한 알고리즘을 130명의 영상에 대하여 적용한 결과 눈을 정확하게 추출한 경우는 120명이고, 입을 정확히 추출한 경우는 119명이었다. 본 논문에서 제안하는 관심 영역 추출 방법은 일반적인 모델 방법에 특정 목적에 적합한 모델을 혼합한 방법으로 일반적인 모델만을 적용한 방법과 프로젝션 분석 등의 특정 목적만을 위한 방법보다 좋은 결과를 얻을 수 있었다.

  • PDF

Face Region Detection Algorithm using Fuzzy Inference (퍼지추론을 이용한 얼굴영역 검출 알고리즘)

  • Jung, Haing-Sup;Lee, Joo-Shin
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.5
    • /
    • pp.773-780
    • /
    • 2009
  • This study proposed a face region detection algorithm using fuzzy inference of pixel hue and intensity. The proposed algorithm is composed of light compensate and face detection. The light compensation process performs calibration for the change of light. The face detection process evaluates similarity by generating membership functions using as feature parameters hue and intensity calculated from 20 skin color models. From the extracted face region candidate, the eyes were detected with element C of color model CMY, and the mouth was detected with element Q of color model YIQ, the face region was detected based on the knowledge of an ordinary face. The result of experiment are conducted with frontal face color images of face as input images, the method detected the face region regardless of the position and size of face images.

  • PDF

Face region detection algorithm of natural-image (자연 영상에서 얼굴영역 검출 알고리즘)

  • Lee, Joo-shin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.1
    • /
    • pp.55-60
    • /
    • 2014
  • In this paper, we proposed a method for face region extraction by skin-color hue, saturation and facial feature extraction in natural images. The proposed algorithm is composed of lighting correction and face detection process. In the lighting correction step, performing correction function for a lighting change. The face detection process extracts the area of skin color by calculating Euclidian distances to the input images using as characteristic vectors color and chroma in 20 skin color sample images. Eye detection using C element in the CMY color model and mouth detection using Q element in the YIQ color model for extracted candidate areas. Face area detected based on human face knowledge for extracted candidate areas. When an experiment was conducted with 10 natural images of face as input images, the method showed a face detection rate of 100%.

A Real-time Face Region Tracking Scheme Using Color Information (색상 정보를 이용한 실시간 얼굴 영역 트랙킹 방법)

  • 황선규;이재호;김형준;김회율
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.368-370
    • /
    • 1999
  • 본 논문에서는 동영상에서 색상 정보를 이용하여 실시간 얼굴 영역 트랙킹에 대해 기술한다. 동영상의 각 프레임에서 살색 영역과 비살색 영역을 분리하여 이 중 얼굴의 형태학적 정보를 이용하여 얼굴 영역만을 선택하였다. 색상 정보만을 이용하여 찾을 경우 생기는 오판된 얼굴 영역 후보는 연속되는 프레임에서의 트랙킹 정보를 이용하여 보정하였다.

  • PDF