Proceedings of the Korea Information Processing Society Conference
/
2003.11a
/
pp.587-590
/
2003
얼굴영역을 분할하기 위해서 Watershed Algorithm 와 Object Grouping 을 이용한 얼굴영역 분할기법을 제안한다. 영상분할에 단점은 단일 알고리즘으로 영역분할이 어렵고, 또한 복잡한 영상에서 정확한 영역을 분할하기가 어렵다는 것이다. 그래서 본 논문에서는 Watershed Segmentation 기법과 Grouping 작업을 통한 병합, 그리고 색상의 선형회귀분석을 이용한 분석법을 적용하여 분할하고자 한다. 얼굴영역 분할방법을 전처리 과정과 영역 병합 그리고 얼굴 부분을 추출하는 3 단계의 과정으로 나누고, 전처리 과정에서는 수리형태학적(Mophological) 연산자를 이용한 영상 분할기법을 이용하여 분할한 후 얼굴 후보 영역을 검출, 영역병합과정에서 기존의 학습데이터와의 유사도를 측정, 얼굴객체추출 조건에 맞지 않는 객체들을 모두 제거함으로써, 정확한 얼굴부분을 분할해 낸다. 실험결과 제안한 방법을 통해 비교적 정확한 얼굴영역을 분할 할 수 있었다.
Proceedings of the Korea Multimedia Society Conference
/
2000.11a
/
pp.256-261
/
2000
디지털 방송, 웹의 발전으로 내용 기반 검색, 비디오 인덱싱, 비디오 검색 등의 시스템들이 많이 연구, 개발되고 있으며, 이러한 시스템에서는 사람을 주제로 검색하는 요구가 많이 발생한다. 대부분의 얼굴 영역 추출 및 인식 시스템들은 질감, 모양, 움직임, 칼라 등의 특징들을 이용하는데, 이들 중 칼라 특징은 기존 시스템의 첫 번째 처리 단계에서 많이 사용된다. 하지만, 복잡한 배경, 조명, 화장(make up), 잡영들 때문에 미리 정의된 단일 칼라 임계값을 이용하여 얼굴 영역과 비 얼굴 영역으로 구분하면 정확한 추출 결과를 얻기 힘들다는 문제가 있다. 본 논문에서는, 점진적으로 피부색 영역을 확장시키면서 얼굴 영역을 추출하는 방법을 제안한다. 이때 확장 단계에서 얼굴 영역을 판단하기 위해, 일굴 각 기관들의 위치적 정보를 사용하였다. 얼굴 기관은 눈과 입을 사용했는데, 여러 가지 요인으로 인해 이들을 정확하게 추출하기가 어렵기 때문에, 각 단계에서 얼굴 후보 영역 내부의 수평 방향성을 가지는 경계를 눈과 입의 영역으로 간주했다. 실험을 통해, 제안한 방법이 하이라이트(highlight)에 의해 얼굴 영역의 일부가 왜곡된 경우와 얼굴 영역이 피부색과 유사한 배경에 인접해 있는 경우에 대해서도 강인하게 얼굴 영역을 추출할 수 있음을 확인하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
1996.06a
/
pp.169-174
/
1996
객체 인식은 대용량의 영상 데이터를 분석, 탐색하고 재구성하기 위한 내용기반 영상 검색의 매우 중요한 분야이며, 특히 인간의 얼굴은 검색 영상 내에서 대부분 주요한 장면에 위치하고 있기 때문에 그 비중이 매우 크다. 본 논문에서는 내용기반 영상 검색을 위한 실시간 얼굴 영역 추출 방법을 제안한다. 제안된 방법에서는 다층 피라미드 구조와 간단한 형태의 머리 형판을 사용하여 얼굴의 후보 영역을 추출한 후, 보다 정확한 얼굴 영역을 추출하기 위하여 후보 영역 내에서 눈의 위치를 탐색하고, 두 눈의 위치를 기준으로 최종적인 얼굴 영역을 추출하였다. 얼굴 후보 영역 추출 단계에서는 얼굴의 형태 정보를 포함하고 있는 모자이크 형판을 사용하여 머리와 턱을 포함한 얼굴 영역을 추출하였으며, 눈 위치 추출 단계에서는 눈의 위치 정보를 사용하여 눈의 탐색 영역을 결정하고, 탐색 영역 내에서 이진 영상 형판을 사용하여 눈의 위치를 추출한 후, 눈 영역의 무게 중심을 눈의 중심 위치로 설정하였다. 마지막 얼굴 영역 추출단계에서는 두 눈의 위치를 기준으로 사각형의 영역을 얼굴 영역으로 추출하였다. 제안된 방법의 성능을 검증하기 위하여 1700장의 다양한 영상에 대하여 실험하였으며, 실험 결과 한 장의 영상에서 얼굴 영역을 추출하는데 있어서, Pentium 166Mz의 PC상에서 평균 3.2초의 처리 속도와 91.7%의 추출률을 보임으로써, 실시간 얼굴 영역 추출에 매우 효과적임을 알 수 있었다.
The Journal of Korean Institute of Communications and Information Sciences
/
v.34
no.2C
/
pp.194-199
/
2009
This paper proposes a face detection algorithm that uses geometrical information on face and hair region. This information that face adjoins hair regions can be the important one for face detection. It is also kept in images with frontal, rotated and lateral face. The face candidates are founded by the analysis of skin regions after detecting the skin and hair color regions in an image. Next, the intersected lesions between face candidates and hair's are created. Finally, the face candidates that include the subsets of these regions turn out to be face. Experimental results showed the high detection rates for frontal and lateral faces as well as faces geometrically distorted.
얼굴영역을 추출하기 위한 방법은 크게 얼굴의 지형적 특징추출에 기반한 방법과 얼굴형판 정합에 기반한 방법으로 분류할 수 있다. 일반적으로 복잡한 배경의 영상에서는 형판정합 방법이 우수하나, 형판의 대표성을 부여하기가 어렵다는 점이 문제시되어 왔다. 본 논문에서는 얼굴영역을 추출하기 위하여 복잡한 얼굴패턴을 몇 개의 주성분 값으로 표현할 수 있는 Hotelling변환 과정을 이용하여 얼굴형판을 생성하고 이를 적용하여 얼굴의 크기, 영상의 명암, 얼굴의 위치에 무관하게 얼굴영역을 추출한다. 또한 휴리스틱한 임계치를 이용하여 두 사람 이상의 얼굴영역을 추출하고 기울어진 얼굴영역을 추출하기 위한 방법도 제시한다. 실험을 통하여 다양한 입력영상에 대한 추출 결과와 고유얼굴에 기반한 방법의 특징을 살펴 보았다.
In this paper we present a facial region detection algorithm for real-time image with complex background and various illumination using spatial and temporal methods. For Detecting Human region It used summation of Edge-Difference Image between continuous image sequences. Then, Detected facial candidate region is vertically divided two objected. Non facial region is reduced using Analysis of Major Color Component. Non facial region has not available Major Color Component. And then, Background is reduced using boundary information. Finally, The Facial region is detected through horizontal, vertical projection of Images. The experiments show that the proposed algorithm can detect robustly facial region with complex background various illumination images.
본 논문에서는 비전 기반 3차원 얼굴 모델의 자동 표정 생성 시스템을 제안한다. 기존의 3차원 얼굴 애니메이션에 관한 연구는 얼굴의 움직임을 나타내는 모션 추정을 배제한 얼굴 표정 생성에 초점을 맞추고 있으며 얼굴 모션 추정과 표정 제어에 관한 연구는 독립적으로 이루어지고 있다. 제안하는 얼굴 모델의 표정 생성 시스템은 크게 얼굴 검출, 얼굴 모션 추정, 표정 제어로 구성되어 있다. 얼굴 검출 방법으로는 얼굴 후보 영역 검출과 얼굴 영역 검출 과정으로 구성된다. HT 컬러 모델을 이용하며 얼굴의 후보 영역을 검출하며 얼굴 후보 영역으로부터 PCA 변환과 템플릿 매칭을 통해 얼굴 영역을 검출하게 된다. 검출된 얼굴 영역으로부터 얼굴 모션 추정과 얼굴 표정 제어를 수행한다. 3차원 실린더 모델의 투영과 LK 알고리즘을 이용하여 얼굴의 모션을 추정하며 추정된 결과를 3차원 얼굴 모델에 적용한다. 또한 영상 보정을 통해 강인한 모션 추정을 할 수 있다. 얼굴 모델의 표정을 생성하기 위해 특징점 기반의 얼굴 모델 표정 생성 방법을 적용하며 12개의 얼굴 특징점으로부터 얼굴 모델의 표정을 생성한다. 얼굴의 구조적 정보와 템플릿 매칭을 이용하여 눈썹, 눈, 입 주위의 얼굴 특징점을 검출하며 LK 알고리즘을 이용하여 특징점을 추적(Tracking)한다. 추적된 특징점의 위치는 얼굴의 모션 정보와 표정 정보의 조합으로 이루어져있기 때문에 기하학적 변환을 이용하여 얼굴의 방향이 정면이었을 경우의 특징점의 변위인 애니메이션 매개변수를 획득한다. 애니메이션 매개변수로부터 얼굴 모델의 제어점을 이동시키며 주위의 정점들은 RBF 보간법을 통해 변형한다. 변형된 얼굴 모델로부터 얼굴 표정을 생성하며 모션 추정 결과를 모델에 적용함으로써 얼굴 모션 정보가 결합된 3차원 얼굴 모델의 표정을 생성한다.
Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.712-714
/
2004
본 논문에서는 다양한 변화에서 얼굴을 효과적으로 검출할 수 있는 방법론을 제안한다. 우리는 복잡한 배경에서 보다 효과적으로 얼굴 영역을 검출하기 위해 영역 분할 알고리즘인 JSEG를 이용하여 영역을 분할을 하게 된다. 그리고 조명 변화에 따른 간섭이 비교적 작은 YCrCb 칼라 모델을 이용하여 분할된 영역에서 후보 얼굴 영역을 찾는다. 마지막으로 보다 정확한 결과를 위하여 검출된 얼굴 후보 영역에서 눈과 눈썹을 검출하고 눈과 눈썹의 기하학적 정보를 이용해서 최종 얼굴 영역을 결정한다. 영역 분할을 이용함으로써 복잡한 배경과 다양한 조명 변화를 지닌 환경에서 다양한 얼굴 영상들을 실험한 결과 높은 정확도를 보여주었다.
Proceedings of the Korean Information Science Society Conference
/
2001.10b
/
pp.436-438
/
2001
본 논문에서는 기울어진 얼굴 영상에서 얼굴 구성 요소를 추출하는 방법을 제안한다. 제안하는 방법은 먼저 피부 색상 정보를 이용하여 얼굴 후보 영역을 추출한다. 이때 YIQ 색상 좌표계를 이용하고 조명의 영향을 반영하기 위하여 피부색상 영역을 다단계로 분할하여 색상 영역을 각각 결정한 뒤 적중률을 계산하여 얼굴 후보 영역을 결정하는 방법을 제안하였다. 2단계에서는 얼굴의 구성 요소중 가장 두드러진 특징인 눈동자 영역을 기준으로 한국인의 표준 얼굴 통계치를 적응하여 탐색하는 방법을 사용하였다. 이때 탐색된 눈동자 좌표로부터 얼굴의 기울기를 추정한다. 다음 단계에서는 얼굴 후보 영역에 대하여 기울어짐 보정을 수행한 뒤, 수평 수직 투영값을 이용하여 얼굴의 구성요소를 탐색한 뒤 얼굴 포함 최소 사각형을 정의하였다. 마지막으로 얼굴 영상 데이터 베이스로부터 얼굴 포함 최소 사각형에 대한 명암값 표준템플릿을 정의하고, 입력 영상에서 탐색된 최소 포함 사각형에 대하여 얼굴 영역 검증하는 방법을 제안하였다.
Proceedings of the Korean Society of Computer Information Conference
/
2016.07a
/
pp.55-58
/
2016
본 논문은 사람의 얼굴 영상에서 잡티를 제거하는 방법을 제안한다. 먼저 입력받은 영상에서 Haar-like Feature 기반 Adaboost 알고리즘과 색상 정보를 이용하여 얼굴 영역을 검출한다. 검출된 얼굴 영역에서 잡티를 제거하기 위해서는 먼저 눈, 코, 입, 눈썹과 같은 얼굴의 주요부위를 검출하고 이 영역을 제외한 순수 피부 영역에 잡티 검출 알고리즘을 적용해야한다. 사람의 얼굴은 미세하게 명암도 차이가 나는 부분이 많기 때문에 가우시안 스무딩을 적용한 후, 그래프 기반 분할 방법을 사용하여 눈, 입, 눈썹을 분할한다. 코 영역은 각 픽셀에 대해 인접픽셀과의 R 채널의 차이값을 가중치 맵으로 만들고 가중치 맵을 분석하여 영역을 분할한다. 분할된 영역에 사람 얼굴의 기하학적 위치 정보를 이용하여 주요부위를 검출한다. 얼굴의 주요부위를 검출하고 그 부위를 제외한 피부 영역에 잡티 검출 알고리즘을 적용한다. 잡티는 Edge와 색상 정보를 이용하여 검출하고, 잡티주변을 검사하여 잡티가 아닌 깨끗한 피부를 잡티 영역에 복사하여 채워나가는 방식으로 피부 영역을 복원한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.