• Title/Summary/Keyword: 얼굴영역

Search Result 957, Processing Time 0.022 seconds

Face Region Segmentation using Watershed Algorithm And Object Grouping (Watershed Algorithm 과 Object Grouping 을 이용한 얼굴영역분할)

  • Hwang, Hoon;Choi, Young-Kwan;Choi, Chul;Lee, Jeong-A;Park, Chang-Choon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.11a
    • /
    • pp.587-590
    • /
    • 2003
  • 얼굴영역을 분할하기 위해서 Watershed Algorithm 와 Object Grouping 을 이용한 얼굴영역 분할기법을 제안한다. 영상분할에 단점은 단일 알고리즘으로 영역분할이 어렵고, 또한 복잡한 영상에서 정확한 영역을 분할하기가 어렵다는 것이다. 그래서 본 논문에서는 Watershed Segmentation 기법과 Grouping 작업을 통한 병합, 그리고 색상의 선형회귀분석을 이용한 분석법을 적용하여 분할하고자 한다. 얼굴영역 분할방법을 전처리 과정과 영역 병합 그리고 얼굴 부분을 추출하는 3 단계의 과정으로 나누고, 전처리 과정에서는 수리형태학적(Mophological) 연산자를 이용한 영상 분할기법을 이용하여 분할한 후 얼굴 후보 영역을 검출, 영역병합과정에서 기존의 학습데이터와의 유사도를 측정, 얼굴객체추출 조건에 맞지 않는 객체들을 모두 제거함으로써, 정확한 얼굴부분을 분할해 낸다. 실험결과 제안한 방법을 통해 비교적 정확한 얼굴영역을 분할 할 수 있었다.

  • PDF

A Method for Face Detection using Region Growing of Skin Color (피부색 영역 확장에 의한 얼굴 영역 추출 방법)

  • 문대성;김성영;김민환
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2000.11a
    • /
    • pp.256-261
    • /
    • 2000
  • 디지털 방송, 웹의 발전으로 내용 기반 검색, 비디오 인덱싱, 비디오 검색 등의 시스템들이 많이 연구, 개발되고 있으며, 이러한 시스템에서는 사람을 주제로 검색하는 요구가 많이 발생한다. 대부분의 얼굴 영역 추출 및 인식 시스템들은 질감, 모양, 움직임, 칼라 등의 특징들을 이용하는데, 이들 중 칼라 특징은 기존 시스템의 첫 번째 처리 단계에서 많이 사용된다. 하지만, 복잡한 배경, 조명, 화장(make up), 잡영들 때문에 미리 정의된 단일 칼라 임계값을 이용하여 얼굴 영역과 비 얼굴 영역으로 구분하면 정확한 추출 결과를 얻기 힘들다는 문제가 있다. 본 논문에서는, 점진적으로 피부색 영역을 확장시키면서 얼굴 영역을 추출하는 방법을 제안한다. 이때 확장 단계에서 얼굴 영역을 판단하기 위해, 일굴 각 기관들의 위치적 정보를 사용하였다. 얼굴 기관은 눈과 입을 사용했는데, 여러 가지 요인으로 인해 이들을 정확하게 추출하기가 어렵기 때문에, 각 단계에서 얼굴 후보 영역 내부의 수평 방향성을 가지는 경계를 눈과 입의 영역으로 간주했다. 실험을 통해, 제안한 방법이 하이라이트(highlight)에 의해 얼굴 영역의 일부가 왜곡된 경우와 얼굴 영역이 피부색과 유사한 배경에 인접해 있는 경우에 대해서도 강인하게 얼굴 영역을 추출할 수 있음을 확인하였다.

  • PDF

Real-time Face Extraction for Content-based Image Retrieval (내용기반 영상 검색을 위한 실시간 얼굴 영역 추출)

  • 이미숙;이성환
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1996.06a
    • /
    • pp.169-174
    • /
    • 1996
  • 객체 인식은 대용량의 영상 데이터를 분석, 탐색하고 재구성하기 위한 내용기반 영상 검색의 매우 중요한 분야이며, 특히 인간의 얼굴은 검색 영상 내에서 대부분 주요한 장면에 위치하고 있기 때문에 그 비중이 매우 크다. 본 논문에서는 내용기반 영상 검색을 위한 실시간 얼굴 영역 추출 방법을 제안한다. 제안된 방법에서는 다층 피라미드 구조와 간단한 형태의 머리 형판을 사용하여 얼굴의 후보 영역을 추출한 후, 보다 정확한 얼굴 영역을 추출하기 위하여 후보 영역 내에서 눈의 위치를 탐색하고, 두 눈의 위치를 기준으로 최종적인 얼굴 영역을 추출하였다. 얼굴 후보 영역 추출 단계에서는 얼굴의 형태 정보를 포함하고 있는 모자이크 형판을 사용하여 머리와 턱을 포함한 얼굴 영역을 추출하였으며, 눈 위치 추출 단계에서는 눈의 위치 정보를 사용하여 눈의 탐색 영역을 결정하고, 탐색 영역 내에서 이진 영상 형판을 사용하여 눈의 위치를 추출한 후, 눈 영역의 무게 중심을 눈의 중심 위치로 설정하였다. 마지막 얼굴 영역 추출단계에서는 두 눈의 위치를 기준으로 사각형의 영역을 얼굴 영역으로 추출하였다. 제안된 방법의 성능을 검증하기 위하여 1700장의 다양한 영상에 대하여 실험하였으며, 실험 결과 한 장의 영상에서 얼굴 영역을 추출하는데 있어서, Pentium 166Mz의 PC상에서 평균 3.2초의 처리 속도와 91.7%의 추출률을 보임으로써, 실시간 얼굴 영역 추출에 매우 효과적임을 알 수 있었다.

  • PDF

Face Detection Using Geometrical Information of Face and Hair Region (얼굴과 헤어영역의 기하학적 정보를 이용한 얼굴 검출)

  • Lee, Woo-Ram;Hwang, Dong-Guk;Jun, Byoung-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2C
    • /
    • pp.194-199
    • /
    • 2009
  • This paper proposes a face detection algorithm that uses geometrical information on face and hair region. This information that face adjoins hair regions can be the important one for face detection. It is also kept in images with frontal, rotated and lateral face. The face candidates are founded by the analysis of skin regions after detecting the skin and hair color regions in an image. Next, the intersected lesions between face candidates and hair's are created. Finally, the face candidates that include the subsets of these regions turn out to be face. Experimental results showed the high detection rates for frontal and lateral faces as well as faces geometrically distorted.

Face Region Detection using Face Template based on Eigenfaces (고유얼굴 기반의 얼굴형판을 이용한 얼굴영역 추출)

  • Go, Jae-Pil;Byeon, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.11
    • /
    • pp.1123-1132
    • /
    • 2000
  • 얼굴영역을 추출하기 위한 방법은 크게 얼굴의 지형적 특징추출에 기반한 방법과 얼굴형판 정합에 기반한 방법으로 분류할 수 있다. 일반적으로 복잡한 배경의 영상에서는 형판정합 방법이 우수하나, 형판의 대표성을 부여하기가 어렵다는 점이 문제시되어 왔다. 본 논문에서는 얼굴영역을 추출하기 위하여 복잡한 얼굴패턴을 몇 개의 주성분 값으로 표현할 수 있는 Hotelling변환 과정을 이용하여 얼굴형판을 생성하고 이를 적용하여 얼굴의 크기, 영상의 명암, 얼굴의 위치에 무관하게 얼굴영역을 추출한다. 또한 휴리스틱한 임계치를 이용하여 두 사람 이상의 얼굴영역을 추출하고 기울어진 얼굴영역을 추출하기 위한 방법도 제시한다. 실험을 통하여 다양한 입력영상에 대한 추출 결과와 고유얼굴에 기반한 방법의 특징을 살펴 보았다.

  • PDF

Using Analysis of Major Color Component facial region detection algorithm for real-time image (동영상에서 얼굴의 주색상 밝기 분포를 이용한 실시간 얼굴영역 검출기법)

  • Choi, Mi-Young;Kim, Gye-Young;Choi, Hyung-Il
    • Journal of Digital Contents Society
    • /
    • v.8 no.3
    • /
    • pp.329-339
    • /
    • 2007
  • In this paper we present a facial region detection algorithm for real-time image with complex background and various illumination using spatial and temporal methods. For Detecting Human region It used summation of Edge-Difference Image between continuous image sequences. Then, Detected facial candidate region is vertically divided two objected. Non facial region is reduced using Analysis of Major Color Component. Non facial region has not available Major Color Component. And then, Background is reduced using boundary information. Finally, The Facial region is detected through horizontal, vertical projection of Images. The experiments show that the proposed algorithm can detect robustly facial region with complex background various illumination images.

  • PDF

3D Facial Model Expression Creation with Head Motion (얼굴 움직임이 결합된 3차원 얼굴 모델의 표정 생성)

  • Kwon, Oh-Ryun;Chun, Jun-Chul;Min, Kyong-Pil
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.1012-1018
    • /
    • 2007
  • 본 논문에서는 비전 기반 3차원 얼굴 모델의 자동 표정 생성 시스템을 제안한다. 기존의 3차원 얼굴 애니메이션에 관한 연구는 얼굴의 움직임을 나타내는 모션 추정을 배제한 얼굴 표정 생성에 초점을 맞추고 있으며 얼굴 모션 추정과 표정 제어에 관한 연구는 독립적으로 이루어지고 있다. 제안하는 얼굴 모델의 표정 생성 시스템은 크게 얼굴 검출, 얼굴 모션 추정, 표정 제어로 구성되어 있다. 얼굴 검출 방법으로는 얼굴 후보 영역 검출과 얼굴 영역 검출 과정으로 구성된다. HT 컬러 모델을 이용하며 얼굴의 후보 영역을 검출하며 얼굴 후보 영역으로부터 PCA 변환과 템플릿 매칭을 통해 얼굴 영역을 검출하게 된다. 검출된 얼굴 영역으로부터 얼굴 모션 추정과 얼굴 표정 제어를 수행한다. 3차원 실린더 모델의 투영과 LK 알고리즘을 이용하여 얼굴의 모션을 추정하며 추정된 결과를 3차원 얼굴 모델에 적용한다. 또한 영상 보정을 통해 강인한 모션 추정을 할 수 있다. 얼굴 모델의 표정을 생성하기 위해 특징점 기반의 얼굴 모델 표정 생성 방법을 적용하며 12개의 얼굴 특징점으로부터 얼굴 모델의 표정을 생성한다. 얼굴의 구조적 정보와 템플릿 매칭을 이용하여 눈썹, 눈, 입 주위의 얼굴 특징점을 검출하며 LK 알고리즘을 이용하여 특징점을 추적(Tracking)한다. 추적된 특징점의 위치는 얼굴의 모션 정보와 표정 정보의 조합으로 이루어져있기 때문에 기하학적 변환을 이용하여 얼굴의 방향이 정면이었을 경우의 특징점의 변위인 애니메이션 매개변수를 획득한다. 애니메이션 매개변수로부터 얼굴 모델의 제어점을 이동시키며 주위의 정점들은 RBF 보간법을 통해 변형한다. 변형된 얼굴 모델로부터 얼굴 표정을 생성하며 모션 추정 결과를 모델에 적용함으로써 얼굴 모션 정보가 결합된 3차원 얼굴 모델의 표정을 생성한다.

  • PDF

Face Detection Using Region Segmentation (영역 분할을 이용한 얼굴 영역 검출)

  • 박선영;이재원;강병두;김종호;김상균
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.712-714
    • /
    • 2004
  • 본 논문에서는 다양한 변화에서 얼굴을 효과적으로 검출할 수 있는 방법론을 제안한다. 우리는 복잡한 배경에서 보다 효과적으로 얼굴 영역을 검출하기 위해 영역 분할 알고리즘인 JSEG를 이용하여 영역을 분할을 하게 된다. 그리고 조명 변화에 따른 간섭이 비교적 작은 YCrCb 칼라 모델을 이용하여 분할된 영역에서 후보 얼굴 영역을 찾는다. 마지막으로 보다 정확한 결과를 위하여 검출된 얼굴 후보 영역에서 눈과 눈썹을 검출하고 눈과 눈썹의 기하학적 정보를 이용해서 최종 얼굴 영역을 결정한다. 영역 분할을 이용함으로써 복잡한 배경과 다양한 조명 변화를 지닌 환경에서 다양한 얼굴 영상들을 실험한 결과 높은 정확도를 보여주었다.

  • PDF

Facial Feature Detection Method within the Skewed Facial Images (기울어진 얼굴 영상에서 얼굴 구성 요소 추출 방법)

  • 김익환;송호근
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.436-438
    • /
    • 2001
  • 본 논문에서는 기울어진 얼굴 영상에서 얼굴 구성 요소를 추출하는 방법을 제안한다. 제안하는 방법은 먼저 피부 색상 정보를 이용하여 얼굴 후보 영역을 추출한다. 이때 YIQ 색상 좌표계를 이용하고 조명의 영향을 반영하기 위하여 피부색상 영역을 다단계로 분할하여 색상 영역을 각각 결정한 뒤 적중률을 계산하여 얼굴 후보 영역을 결정하는 방법을 제안하였다. 2단계에서는 얼굴의 구성 요소중 가장 두드러진 특징인 눈동자 영역을 기준으로 한국인의 표준 얼굴 통계치를 적응하여 탐색하는 방법을 사용하였다. 이때 탐색된 눈동자 좌표로부터 얼굴의 기울기를 추정한다. 다음 단계에서는 얼굴 후보 영역에 대하여 기울어짐 보정을 수행한 뒤, 수평 수직 투영값을 이용하여 얼굴의 구성요소를 탐색한 뒤 얼굴 포함 최소 사각형을 정의하였다. 마지막으로 얼굴 영상 데이터 베이스로부터 얼굴 포함 최소 사각형에 대한 명암값 표준템플릿을 정의하고, 입력 영상에서 탐색된 최소 포함 사각형에 대하여 얼굴 영역 검증하는 방법을 제안하였다.

  • PDF

Efficient Facial Blemishes Removal with Face Feature Detection (얼굴 구성요소 검출을 통한 효율적인 얼굴 잡티 제거)

  • Park, Ho-Jun;Cha, Eui-Young
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.07a
    • /
    • pp.55-58
    • /
    • 2016
  • 본 논문은 사람의 얼굴 영상에서 잡티를 제거하는 방법을 제안한다. 먼저 입력받은 영상에서 Haar-like Feature 기반 Adaboost 알고리즘과 색상 정보를 이용하여 얼굴 영역을 검출한다. 검출된 얼굴 영역에서 잡티를 제거하기 위해서는 먼저 눈, 코, 입, 눈썹과 같은 얼굴의 주요부위를 검출하고 이 영역을 제외한 순수 피부 영역에 잡티 검출 알고리즘을 적용해야한다. 사람의 얼굴은 미세하게 명암도 차이가 나는 부분이 많기 때문에 가우시안 스무딩을 적용한 후, 그래프 기반 분할 방법을 사용하여 눈, 입, 눈썹을 분할한다. 코 영역은 각 픽셀에 대해 인접픽셀과의 R 채널의 차이값을 가중치 맵으로 만들고 가중치 맵을 분석하여 영역을 분할한다. 분할된 영역에 사람 얼굴의 기하학적 위치 정보를 이용하여 주요부위를 검출한다. 얼굴의 주요부위를 검출하고 그 부위를 제외한 피부 영역에 잡티 검출 알고리즘을 적용한다. 잡티는 Edge와 색상 정보를 이용하여 검출하고, 잡티주변을 검사하여 잡티가 아닌 깨끗한 피부를 잡티 영역에 복사하여 채워나가는 방식으로 피부 영역을 복원한다.

  • PDF