• 제목/요약/키워드: 얼굴영상

검색결과 1,528건 처리시간 0.041초

복잡배경의 영상에서 NTGST를 이용한 효과적인 얼굴 검출 (An Effective Face Detection for the Images with the Complex Backgrounds Using NTGST)

  • 이재근;김종화;서경석;박은진;최흥문
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 제14회 신호처리 합동 학술대회 논문집
    • /
    • pp.147-150
    • /
    • 2001
  • 본 논문에서 는 NTGST(noise-tolerant generalized symmetry transform)[1]를 이용하여 복잡배경 영상으로부터 효과적으로 여러 얼굴을 검출할 수 있는 알고리즘을 제안하였다. 먼저 NTGST를 이용하여 얼굴이 존재할 가능성이 있는 관심영역(region of interest: ROI)을 찾고, 각각의 관심영역 내에서 얼굴의 주된 특징인 눈, 코, 입을 부각시킨 Fovea 영상으로부터 대칭변환의 국부 최대치(local maximum)를 구한다음, 이들간의 관계를 기하학적 상관 관계로 분석 확인함으로써 사람 얼굴만을 검출 하도록 하였다. 여러 얼굴을 포함하는 복잡한 배경 영상에 대해 제안한 알고리즘을 적용한 결과 89.7%의 검출율을 얻을 수 있었다.

  • PDF

코 정보를 이용한 3차원 얼굴 인식 (3D Face Recognition using Nose Information)

  • 이영학;심재창;이태홍
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 제14회 신호처리 합동 학술대회 논문집
    • /
    • pp.135-138
    • /
    • 2001
  • 본 논문에서는 3D 레이저 스캐너로 입력된 3차원 얼굴 영상에서 코의 특징 정보를 이용하여 얼굴을 인식하는 알고리즘을 제안하였다. 특히 3차원 영상은 주변의 조명 변화에 크게 영향을 받지 않는 장점이 있다. 이러한 정보를 이용하여, 제안된 알고리즘에서는 얼굴에서 가장 두드러지게 보이는 코의 3차원 정보를 이용하여 인식하는 알고리즘을 제안한다. 먼저 코를 추출한 다음, 회전된 3차원 영상에 대하여 정규화를 실시하고, 등고선을 이용한 영역기반의 방법과 특징기반의 방법을 이온하여 인식을 수행한다. 등고선을 이용한 영역기반은 3차원 얼굴 영상을 코끝의 좌표를 기준 점으로 등고선의 값이 10, 20, 30이 되는 영역을 추출 한 후 데이터 베이스 값들과 비교하여 각각의 차 영역에 대한 무게중심(X, Y), 픽셀 수, 분산을 구하여 순위가 가장 높은 것을 취한다. 특징 기반의 방법으로, 얼굴에 있어서의 실제의 코의 길이, 높이, 너비를 구하여 그 차가 가장 적은 것을 취한다. 위의 2가지 방법을 이용하여 인식을 수행 결과 100%의 인식률을 나타내었다.

  • PDF

방송영상에서의 등장인물 검색을 위한 고속 얼굴 인식 시스템 (Fast Face Recognition System for Character Retrieval in TV Programs)

  • 정병희;하명환;김희정;박현선;이흔진;김회율
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (2)
    • /
    • pp.523-525
    • /
    • 2003
  • 방송 프로그램이나 영화와 같은 동영상을 인터넷에서 검색하는 서비스가 활성화됨에 따라 특정 인물이 등장하는 부분을 검색하는 기능은 일반 사용자나 프로그램을 만드는 제작자 모두에게 필요한 기능이 되었다. 등장인물 중심의 검색을 위해서는 해당 인물의 얼굴 검출 및 인식 기능이 필수적이며, 특히 방송영상의 특성에 적합하고 등장인물 검색 서비스에 적용 가능한 얼굴 검출 및 인식 기술이 요구된다 이를 위해 본 논문에서는 고속 얼굴 인식 시스템을 제안하고, 실시간 수행이 가능한 얼굴 검출 및 인식 알고리즘을 제안하다. 제안한 얼굴 검출 및 인식 알고리즘은 DCT 기법을 전처리 단계로 두어 계산량을 최소화하면서도 특징값의 정보량은 유지하는 방법을 사용한다. 본 논문에서는 제안하는 알고리즘이 기존 방법에 비해 우수한 성능을 보이며, 실제 방송 영상을 구현된 시스템에 적용하여 시간과 검출률/인식률 측면에서 우수한 결과를 나타냄을 보인다.

  • PDF

홍채인식과 얼굴인식을 이용한 다중생체인식 (Multi-Modal Biometrics Recognition Using the Iris Recognition and Face Recognition)

  • 유병진;고현주;권만준;전명근
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2005년도 추계학술발표대회 및 정기총회
    • /
    • pp.427-430
    • /
    • 2005
  • 본 연구는 기존 단일 생체인식의 단점을 보완하기 위해 다중생체인식(Multi-Modal Biometrics Recognition)기법을 연구한 것으로, 홍채영상을 이용한 홍채인식과 얼굴영상을 이용한 얼굴인식을 융합하기 위해 다양한 방법을 시도해 보았다. 이에, CBNU 홍채 영상데이터를 사용한 홍채인식은 Gabor Wavelet과 FLDA(Fuzzy Linear Discriminant Analysis)를 이용하였으며, FERET 얼굴영상데이터를 사용한 얼굴인식도 FLDA를 이용하여 패턴의 특징을 추출하고 matching에 따른 score를 각각 획득한다. 얻어진 두 score 값에 대하여 다양한 균등화과정을 사용해 보았으며, 다중생체인식 융합방법중 하나인 Weight sum rule을 적용하여 인식률을 얻었다. 또한, 단일 생체인식의 경우보다 좋은 성능을 나타냄을 확인하기 위해 FRR과 FAR등의 인식률 평가방법을 사용하였으며, 기존 단일생체인식 방법보다 좋은 성능을 보이고 있음을 확인할 수 있었다.

  • PDF

FP-ICA의 인수부호에 의한 얼굴인식 (Face Recognition by Using Factorial Face Code of FP-ICA)

  • 조용현;홍성준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2005년도 춘계학술발표대회
    • /
    • pp.797-800
    • /
    • 2005
  • 본 논문에서는 고정점 알고리즘의 독립성분분석을 이용하여 얼굴영상의 인수부호를 찾아 얼굴을 인식하는 기법을 제안하였다. 여기서 고정점 알고리즘은 뉴우턴법에 기초한 것으로 빠른 특징추출을 위함이고, 독립성분분석의 이용은 통계적으로 독립인 계수로 구성된 인수부호를 효과적으로 추출하기 위함이다. 제안된 기법을 Yale 얼굴영상 데이터베이스로부터 선택된 20개의 $324{\ast}243$ 픽셀의 영상을 대상으로 시뮬레이션한 결과, 기저영상의 개수에 따른 압축성능과 L1- 및 L2-norm의 거리척도에 따른 분류에서 우수한 인식성능이 있음을 확인할 수 있었다.

  • PDF

피부 색상 및 아다부스트 알고리즘을 이용한 안정적 얼굴감지 (Stable Face Detection using Skin-tone and AdaBoost Algorithm)

  • 최유주;변재희
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2008년도 한국컴퓨터종합학술대회논문집 Vol.35 No.1 (C)
    • /
    • pp.565-568
    • /
    • 2008
  • 본 논문은 RGB 24bit 컬러 영상으로 전달되는 카메라 원영상에 대해 사람의 얼굴을 안정적으로 감지할 수 있는 알고리즘을 제시한다. RGB 입력영상을 HSI 기반의 컬러모델로 변환하여 피부 색상을 추출하고 그리드 영상을 기반으로 CCL (Connected-Component Labeling) 알고리즘을 적용하여 피부 블럽을 검출한 뒤, 아다부스트 알고리즘을 이용하여 얼굴 영역과 얼굴이 아닌 다른 피부 영역을 구분한다. 제안방법은 일반적으로 얼굴 감지를 위하여 폭넓게 사용되고 있는 아다부스트 알고리즘만을 적용하였을 때보다 얼굴감지 오류를 줄일 수 있다.

  • PDF

KPCA 기반 노이즈 제거 기법을 이용한 부분 손상된 얼굴 영상의 복원 (Reconstruction of Partially Occluded Facial Image Utilizing KPCA-based Denoising Method)

  • 강대성;김종호;박주영
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 춘계학술대회 학술발표 논문집 제15권 제1호
    • /
    • pp.247-250
    • /
    • 2005
  • 많은 경우, 부분 손상된 얼굴 영상을 복원해야 할 필요가 있다. 대표적인 예로는 감시 카메라에 찍힌 범인의 얼굴 영상이 이에 속한다. 이런 경우 얼굴의 중요한 부분이 가려져 있기 때문에 자동 얼굴 인식 시스템이나 사람의 관찰로는 그 부분을 인식하기는 매우 어렵다. 이 논문에서는 그 어려움을 극복하기 위해 Kernel PCA 기반 노이즈 제거 기법을 부분 손상된 얼굴 영상에 적용한 문제를 고려해 보았다.

  • PDF

블록단위 영역분할을 이용한 얼굴 특징 요소 추출 (Extraction of Facial Feature Component using Section Segmentation of Block-units)

  • 김승업;이우범;김욱현
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2000년도 추계종합학술대회논문집
    • /
    • pp.97-100
    • /
    • 2000
  • 본 논문에서는 얼굴의 특징 추출 알고리즘을 제안한다. 입력 영상을 이진 영상으로 처리한 후, 얼굴 요소 후보 블록의 면적, 둘레, 원형도, 종횡비를 이용하여 불변하는 눈, 코, 입의 특징 요소를 추출한다. 사람의 얼굴에 대한 특징 요소를 추출하기 위하여 우선 이진 영상을 생성한다. 하나 하나의 고립된 영역으로 분리하기 위하여 화소 레이블링을 한 후 만들어진 얼굴 요소 후보 블록 단위로 면적을 구하고, 윤곽선 추적 방법에 의하여 둘레를 구한 다음 면적, 둘레, 원형도 및 종횡비의 유사도를 구한다 블록의 종합 유사도, 대칭적 거리, 위치의 유사도를 활용하여 눈, 코, 입을 추출한다. 추출된 각 특징 요소간의 거리와 각도를 이용하여 12개의 특징 인수를 구하는 제안 알고리즘을 수행함으로써 얼굴의 특징 인수들을 추출한다. 각 특징점 사이의 거리와 각 거리간의 기울기를 이용하여 100명으로부터 획득한 297개의 원 영상을 대상으로 12개의 특징 파라미터를 추출한 결과 92.93%의 추출 성공률을 보였다. 이러한 결과는 외부 환경의 영향을 덜 받는 눈, 코, 입의 위치 관계의 블록을 근거로 특징 요소를 추출할 수 있도록 제안 알고리즘을 구성하였던 것으로 판단된다.

  • PDF

SIFT와 부분공간분석법을 활용한 얼굴인식 (Face Recognition using SIFT and Subspace Analysis)

  • 김동현;박혜영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2010년도 한국컴퓨터종합학술대회논문집 Vol.37 No.1(C)
    • /
    • pp.390-394
    • /
    • 2010
  • 본 논문에서는 영상인식에서 널리 사용되는 지역적 특징인 SIFT와 부분공간분석에 의한 차원축소방법의 결합을 통하여 얼굴을 인식하는 방법을 제안한다. 기존의 SIFT기반 영상인식 방법에서는 추출된 키 포인트 각각에 대하여 계산된 특징기술자들을 개별적으로 비교하여 얻어지는 유사도를 바탕으로 인식을 수행하는데 반해, 본 논문에서 제안하는 접근법은 SIFT의 특징기술자를 명도 값으로 표현된 얼굴 영상을 여려 변형에 강건한 형태로 표현되도록 변환하는 표현방식으로 본다. SIFT기반의 특징기술자에 의해 표현된 얼굴 영상을 부분공간분석법에 의해 저차원의 특징벡터로 다시 표현되고, 이 특징벡터를 이용하여 얼굴인식을 수행한다. 잘 알려진 벤치마크 데이터인 AR 데이터베이스에 대한 실험을 통해 제안한 방법이 조명 변화와 가려짐에 강인한 인식 결과를 보여줄 뿐 아니라, 기존의 SIFT 기반의 얼굴 인식 방법에 비하여 우수한 처리 속도를 보임을 확인하였다.

  • PDF

얼굴 검증을 이용한 개선된 얼굴 검출 (Improved Face Detection Algorithm Using Face Verification)

  • 오정수
    • 한국정보통신학회논문지
    • /
    • 제22권10호
    • /
    • pp.1334-1339
    • /
    • 2018
  • Viola & Jones의 얼굴 검출 알고리즘은 대표적인 얼굴 검출 알고리즘으로 매우 우수한 얼굴 검출 성능을 보인다. 그러나 많은 얼굴을 포함하는 영상들을 대상으로 한 Viola & Jones 알고리즘은 얼굴의 다양성으로 미검출 얼굴들, 가짜 얼굴들과 중복 검출된 얼굴들 같은 잘못 검출된 얼굴들을 발생시킨다. 본 논문은 Viola & Jones 알고리즘에서 생성된 잘못 검출된 얼굴들을 제거하는 얼굴 검증 알고리즘을 이용한 개선된 얼굴 검출 알고리즘을 제안한다. 제안된 얼굴 검증 알고리즘은 검출된 얼굴들에 대한 크기, 지정된 영역의 피부색, 눈과 입에서 발생된 에지, 중복 검출을 평가하여 얼굴이 유효한지를 확인한다. Viola & Jones 알고리즘에 의해 검출된 658개의 얼굴 영상들을 대상으로 한 얼굴 검증 실험에서 제안된 얼굴 검증 알고리즘은 실제 사람들에 의해 생성된 모든 얼굴 영상들을 검증하는 것을 보여준다.