• Title/Summary/Keyword: 얼굴영상

Search Result 1,528, Processing Time 0.045 seconds

3D Facial Synthesis and Animation for Facial Motion Estimation (얼굴의 움직임 추적에 따른 3차원 얼굴 합성 및 애니메이션)

  • Park, Do-Young;Shim, Youn-Sook;Byun, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.6
    • /
    • pp.618-631
    • /
    • 2000
  • In this paper, we suggest the method of 3D facial synthesis using the motion of 2D facial images. We use the optical flow-based method for estimation of motion. We extract parameterized motion vectors using optical flow between two adjacent image sequences in order to estimate the facial features and the facial motion in 2D image sequences. Then, we combine parameters of the parameterized motion vectors and estimate facial motion information. We use the parameterized vector model according to the facial features. Our motion vector models are eye area, lip-eyebrow area, and face area. Combining 2D facial motion information with 3D facial model action unit, we synthesize the 3D facial model.

  • PDF

Face Detection Using Support Vector Domain Description in Color Images (컬러 영상에서 Support Vector Domain Description을 이용한 얼굴 검출)

  • Seo Jin;Ko Hanseok
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.1
    • /
    • pp.25-31
    • /
    • 2005
  • In this paper, we present a face detection system using the Support Vector Domain Description (SVDD) in color images. Conventional face detection algorithms require a training procedure using both face and non-face images. In SVDD however we employ only face images for training. We can detect faces in color images from the radius and center pairs of SVDD. We also use Entropic Threshold for extracting the facial feature and sliding window for improved performance while saving processing time. The experimental results indicate the effectiveness and efficiency of the proposed algorithm compared to conventional PCA (Principal Component Analysis)-based methods.

Face region detection algorithm of natural-image (자연 영상에서 얼굴영역 검출 알고리즘)

  • Lee, Joo-shin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.1
    • /
    • pp.55-60
    • /
    • 2014
  • In this paper, we proposed a method for face region extraction by skin-color hue, saturation and facial feature extraction in natural images. The proposed algorithm is composed of lighting correction and face detection process. In the lighting correction step, performing correction function for a lighting change. The face detection process extracts the area of skin color by calculating Euclidian distances to the input images using as characteristic vectors color and chroma in 20 skin color sample images. Eye detection using C element in the CMY color model and mouth detection using Q element in the YIQ color model for extracted candidate areas. Face area detected based on human face knowledge for extracted candidate areas. When an experiment was conducted with 10 natural images of face as input images, the method showed a face detection rate of 100%.

Face recognition rate comparison using Principal Component Analysis in Wavelet compression image (Wavelet 압축 영상에서 PCA를 이용한 얼굴 인식률 비교)

  • 박장한;남궁재찬
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.5
    • /
    • pp.33-40
    • /
    • 2004
  • In this paper, we constructs face database by using wavelet comparison, and compare face recognition rate by using principle component analysis (Principal Component Analysis : PCA) algorithm. General face recognition method constructs database, and do face recognition by using normalized size. Proposed method changes image of normalized size (92${\times}$112) to 1 step, 2 step, 3 steps to wavelet compression and construct database. Input image did compression by wavelet and a face recognition experiment by PCA algorithm. As well as method that is proposed through an experiment reduces existing face image's information, the processing speed improved. Also, original image of proposed method showed recognition rate about 99.05%, 1 step 99.05%, 2 step 98.93%, 3 steps 98.54%, and showed that is possible to do face recognition constructing face database of large quantity.

Face Region Extraction Using Edge and Motion information (에지와 움직임 정보를 이용한 얼굴검출)

  • 박성진;김수현;차형태
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.676-678
    • /
    • 2004
  • 얼굴인식기술이 인증 일 보안을 위한 도구로 활용되고 있지만 입력영상의 상태, 즉 복잡한 배경과 조명환경에 따라 적용할 수 있는 범위가 제약적일 수밖에 없다. 본 논문에서는 이러한 제약을 최소화하기 위한 방법과 좀 더 정확한 얼굴 영역 검출을 위한 기법을 제시한다. 제안된 방법은 움직임에 기반 한 에지 차영상을 이용하여 얼굴 윤곽을 검출한 후 이를 X와 Y축의 프로파일을 이용하여 얼굴영역을 예측한다. 제안된 알고리즘은 복잡한 배경이나 조명등으로 인해 얼굴의 형태가 결여된 입력영상에서도 매우 안정적으로 적용됨을 실험을 통해 확인하였다

  • PDF

Facial Image Synthesis Considering Illumination Variations on Mobile Devices (모바일 기기에서 조명 변화를 고려한 얼굴 영상 합성)

  • Kwon, Ji-In;Lee, Sang-Hoon;Choi, Soo-Mi
    • Journal of the HCI Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.21-26
    • /
    • 2011
  • This paper presents a robust method for facial image synthesis under varying illumination by combining illumination correction and Poisson image processing techniques. The presented method automatically detects skin area and corrects highly saturated regions that can cause bad effects on the final synthesis image. The developed method can be applied to various facial synthesis applications by correcting illumination variations that can occur frequently on photos taken with a camera phone.

  • PDF

휴대폰에서의 홍채인식 연구

  • 박강령
    • The Magazine of the IEIE
    • /
    • v.33 no.1 s.260
    • /
    • pp.35-45
    • /
    • 2006
  • 최근 휴대폰에서 개인 정보 보안의 중요성이 대두되고 있으며, 이에 따라 생체인식 기능을 내장한 휴대폰에 관심이 집중되고 있으므로, 본 논문에서는 휴대용 기기에 홍채인식기술을 적용하기 위한 방법을 제안하고 하다. 기존의 홍채인식 알고리즘은 인식을 위해 확대된 홍채영상을 사용하여 처리하였고, 이러한 홍채영상을 획득하기 위해서 고 배율의 줌 렌즈(zoom lens)와 초점 렌즈(focus lens)를 사용하였다. 그런데, 휴대폰에서의 홍채인식을 시도하기 위해 줌렌즈와 초점렌즈를 장착하게 되면 가격이 상승하고 부피가 증가되어, 작고 휴대하기 편리한 휴대폰의 특징에 맞지 않아 사용하기 어려운 문제가 있다. 그러나 최근 휴대폰의 멀티미디어 기기 융복합 추세로 인해 휴대폰 내에 장착된 메가 픽셀 카메라(Mega-pixel Camera)의 성능이 급속히 발전함에 따라, 고 배율의 줌, 초점 렌즈 없이도 확대된 홍채영상의 획득이 가능하게 되었다. 즉, 메가 픽셀 카메라 폰을 사용하여 사용자로부터 원거리에서 취득한 얼굴영상에서 홍채 영역이 홍채인식을 위해 충분한 픽셀정보를 가지게 된다. 그러나 이러한 경우 입력 얼굴영상에서 눈 영역을 먼저 찾는 과정이 요구된다. 본 논문에서는 이러한 얼굴영상에서 각막에 의해 반사되는 조명 반사광을 기반으로 휴대폰에서의 홍채인식을 위한 고속 동공검출 방법을 제안한다. 또한 입력 영상 신호를 디지털 신호로 변환하는 과정에서 밝기와 대조 값을 조정하여 동공의 검은 영역과 조명 밝은 반사 위치를 추출함으로써, 정확한 홍채 영역을 보다 빠르고 쉽게 추출할 수 있는 방법 역시 제안한다. 그리고 일반적으로 휴대폰에서 홍채 인식의 경우 손으로 들고 사용하므로, 손 흔들림에 의한 영상 흐림 현상이 빈번하게 발생하게 된다. 이러한 문제를 해결하기 위하여 본 연구에서는 영상 복원 기법을 적용하여 흐려진 홍채 영상을 복원하는 기법을 제안한다. 마지막으로, 휴대폰의 경우 실외에서 사용이 빈번함으로, 입력 홍채 영상에서 태양광에 의한 영향을 많이 받게 된다. 이러한 문제를 해결하여 홍채 인식 성능을 개선할 수 있는 방법 역시 소개하고자 한다.

  • PDF

Face Detection based Real-time Eye Gaze Correction Method Using a Depth Camera (거리 카메라를 이용한 얼굴 검출 기반 실시간 시선 보정 방법)

  • Jo, Hoon;Ra, Moon-Soo;Kim, Whoi-Yul;Kim, Deuk-Hwa
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.11a
    • /
    • pp.151-154
    • /
    • 2012
  • 본 논문에서는 화상통신의 현실감을 증진시킬 수 있는 화자 간 시선 맞춤 시스템을 제안한다. 제안하는 방법은 Kinect 거리 카메라로부터 입력된 영상에서 화자의 얼굴 영역을 획득하여 화자의 시선이 카메라를 응시하도록 획득한 영역을 변환한 후에 원본 영상과 합성한다. Kinect 거리 카메라에서 획득한 얼굴 영역에는 다양한 형태의 잡음이 많아 미디언 필터와 모폴로지 연산을 통해 얼굴 영역의 잡음을 제거한다. 화자의 위치에 상관 없이 화자가 카메라를 응시하는 영상을 생성하기 위해서 Kinect 가 제공하는 거리 정보를 이용하여 시선 보정 각도와 회전 축을 획득한다. 시선이 보정된 얼굴 영역은 원본 영상에서 존재하지 않는 영역을 포함하고 있기 때문에, 원본 영상의 각 화소를 삼각형 메쉬로 구성한 후 해당 영역을 보간하여 최종적으로 시선이 보정된 영상을 생성한다. 제안하는 방법은 시선 맞춤 영상을 생성하는 데 필수적인 눈과 주변 얼굴 영역만 선택해서 변환하므로 영상의 왜곡이 적고 실시간 처리가 가능하다는 장점이 있다. 또한 카메라와 화자 사이의 거리 정보를 이용해 화자의 위치에 적응적인 시선 맞춤 영상을 생성할 수 있다. 실험을 통해 Intel i5 CPU 를 장착한 PC에서 $320{\times}240$ 크기의 영상을 사용할 경우 초당 약 35 프레임의 보정된 영상을 생성하여 제안하는 방법이 실시간 처리가 가능하다는 것을 확인하였다.

  • PDF

Hardware Design of Super Resolution on Human Faces for Improving Face Recognition Performance of Intelligent Video Surveillance Systems (지능형 영상 보안 시스템의 얼굴 인식 성능 향상을 위한 얼굴 영역 초해상도 하드웨어 설계)

  • Kim, Cho-Rong;Jeong, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.9
    • /
    • pp.22-30
    • /
    • 2011
  • Recently, the rising demand for intelligent video surveillance system leads to high-performance face recognition systems. The solution for low-resolution images acquired by a long-distance camera is required to overcome the distance limits of the existing face recognition systems. For that reason, this paper proposes a hardware design of an image resolution enhancement algorithm for real-time intelligent video surveillance systems. The algorithm is synthesizing a high-resolution face image from an input low-resolution image, with the help of a large collection of other high-resolution face images, called training set. When we checked the performance of the algorithm at 32bit RISC micro-processor, the entire operation took about 25 sec, which is inappropriate for real-time target applications. Based on the result, we implemented the hardware module and verified it using Xilinx Virtex-4 and ARM9-based embedded processor(S3C2440A). The designed hardware can complete the whole operation within 33 msec, so it can deal with 30 frames per second. We expect that the proposed hardware could be one of the solutions not only for real-time processing at the embedded environment, but also for an easy integration with existing face recognition system.

Face Tracking System using Active Appearance Model (Active Appearance Model을 이용한 얼굴 추적 시스템)

  • Cho, Kyoung-Sic;Kim, Yong-Guk
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.1044-1049
    • /
    • 2006
  • 얼굴 추적은 Vision base HCI의 핵심인 얼굴인식, 표정인식 그리고 Gesture recognition등의 다른 여러 기술을 지원하는 중요한 기술이다. 이런 얼굴 추적기술에는 영상(Image)의 Color또는 Contour등의 불변하는 특징들을 사용 하거나 템플릿(template)또는 형태(appearance)를 사용하는 방법 등이 있는데 이런 방법들은 조명환경이나 주위 배경등의 외부 환경에 민감하게 반응함으로 해서 다양한 환경에 사용할 수 없을 뿐더러 얼굴영상만을 정확하게 추출하기도 쉽지 않은 실정이다. 이에 본 논문에서는 deformable한 model을 사용하여 model과 유사한 shape과 appearance를 찾아 내는 AAM(Active Appearance Model)을 사용하는 얼굴 추적 시스템을 제안하고자 한다. 제안된 시스템에는 기존의 Combined AAM이 아닌 Independent AAM을 사용하였고 또한 Fitting Algorithm에 Inverse Compositional Image Alignment를 사용하여 Fitting 속도를 향상 시켰다. AAM Model을 만들기 위한 Train set은 150장의 4가지 형태에 얼굴을 담고 있는 Gray-scale 영상을 사용 하였다. Shape Model은 각 영상마다 직접 표기한 47개의 Vertex를 Trianglize함으로서 생성되는 71개의 Triangles을 하나의 Mesh로 구성하여 생성 하였고, Appearance Model은 Shape 안쪽의 모든 픽셀을 사용해서 생성하였다. 시스템의 성능 평가는 Fitting후 Shape 좌표의 정확도를 측정 함으로서 평가 하였다.

  • PDF