Recent deep learning-based face super-resolution (FSR) works showed significant performances by utilizing facial prior knowledge such as facial landmark and dictionary that reflects structural or semantic characteristics of the human face. However, most of these methods require additional processing time and memory. To solve this issue, this paper propose an efficient FSR models using knowledge distillation techniques. The intermediate features of teacher network which contains dictionary information based on major face regions are transferred to the student through adversarial multi-scale features distillation. Experimental results show that the proposed model is superior to other SR methods, and its effectiveness compare to teacher model.
Facial expression is an effective tool to express human emotion. In this paper, a facial expression analysis method based on the base faces and their blending ratio is proposed. The seven base faces were chosen as axes describing and analyzing arbitrary facial expression. We set up seven facial expressions such as, surprise, fear, anger, disgust, happiness, sadness, and expressionless as base faces. Facial expression was built by fitting generic 3D facial model to facial image. Two comparable methods, Genetic Algorithms and Simulated Annealing were used to search the blending ratio of base faces. The usefulness of the proposed method for facial expression analysis was proved by the facial expression synthesis results.
Proceedings of the Korea Institute of Convergence Signal Processing
/
2000.12a
/
pp.117-120
/
2000
본 논문에서는 2매의 2차원 얼굴영상으로부터 이들을 합성하여 3차원 얼굴의 가상형상을 복원한다. 여기서 2매의 2차원 얼굴영상은 정면과 측면 영상을 사용한다. 우선 임의의 일반 얼굴에 대한 기준모델을 설정하고, 이 모델에서, 얼굴형상의 특징을 표현하는 귀, 2개의 눈, 코 및 입 부분에 집중적으로 특징점을 규정하고, 그 외에 이마 및 턱 부분에도 특징 점을 규정하여 그 위치좌표를 저장해 둔다. 그 후 정면영상의 좌 우측에 측면영상을 대칭적으로 접속하고 영상의 기하변환 방법을 적용하여 점차적으로 합성한다. 이때 나타나는 합성부분에 색상 및 명도의 차를 제거하기 위해 선형보간법을 적용하여 자연스런 3차원 가상얼굴을 구현하게 된다. 그 결과 불특정 얼굴형상도 3차원으로 구현할 수 있음을 확인하였다.
Proceedings of the Korean Society of Computer Information Conference
/
2019.01a
/
pp.243-246
/
2019
본 논문에서는 감성과 힐링, 머신러닝이라는 주제를 바탕으로 딥러닝을 통한 사용자의 얼굴표정을 인식하고 그 얼굴표정을 기반으로 음악을 재생해주는 얼굴표정 기반의 음악재생 프로그램을 제안한다. 얼굴표정 기반 음악재생 프로그램은 딥러닝 기반의 음악 프로그램으로써, 이미지 인식 분야에서 뛰어난 성능을 보여주고 있는 CNN 모델을 기반으로 얼굴의 표정을 인식할 수 있도록 데이터 학습을 진행하였고, 학습된 모델을 이용하여 웹캠으로부터 사용자의 얼굴표정을 인식하는 것을 통해 사용자의 감정을 추측해낸다. 그 후, 해당 감정에 맞게 감정을 더 증폭시켜줄 수 있도록, 감정과 매칭되는 노래를 재생해주고, 이를 통해, 사용자의 감정이 힐링 및 완화될 수 있도록 도움을 준다.
Face detection refers to the process extracting facial regions in an input image, which can improve speed and accuracy of recognition or authorization system, and has diverse applicability. Since conventional works have tried to detect faces based on the whole shape of faces, its detection performance can be degraded by occlusion made with accessories or parts of body. In this paper we propose a method combining local feature descriptors and probability modeling in order to detect partially occluded face effectively. In training stage, we represent an image as a set of local feature descriptors and estimate a statistical model for normal faces. When the test image is given, we find a region that is most similar to face using our face model constructed in training stage. According to experimental results with benchmark data set, we confirmed the effect of proposed method on detecting partially occluded face.
Journal of the Korea Institute of Information and Communication Engineering
/
v.7
no.5
/
pp.934-940
/
2003
In this paper, hair beauty fashion design feature points detection system is proposed. A hair models and hair face is represented as a graph where the nodes are placed at facial feature points labeled by their Gabor features and the edges are describes their spatial relations. An innovative flexible feature matching is proposed to perform features correspondence between hair models and the input image. This matching hair model works like random diffusion process in the image space by employing the locally competitive and globally corporative mechanism. The system works nicely on the face images under complicated background. pose variations and distorted by accessories. We demonstrate the benefits of our approach by its implementation on the face identification system.
본 논문에서는 컬러정보를 이용하여 외부 조명의 영향에 대응하면서 얼굴 후보영역을 추출하고, 추출된 후보 영역으로부터 다채널 스킨컬러 모델로 특정 정보를 추출하는 검출 기법을 제시한다. 외부 조명에 민감한 스킨컬러 특성을 고려해 색상정보와 광도를 분리할 수 있는 $YC_rC_b$ 색상모델을 이용하며, Green, Blue 채널의 정보를 Gaussian 확률밀도 모델로부터 $C_b-C_g$의 좁은 범위에 분포되어 있는 스킨컬러 영역 밀도를 모델링한다. 또한 얼굴영역에 Region Restricting과 임계값 반복 알고리즘을 사용하여 눈 영역 검출 과정을 보이고, 실시간 복합 얼굴 검출 시스템 조명방식에 의해 결과를 나타낸다.
This paper presents a system for recognizing sunglasses and a mask of an ATM (Automatic Teller Machine) user. The proposed system extracts firstly facial contour, then from this extraction results it estimates the regions of eyes and mouth. Finally, it recognizes sunglasses and a mouth using Histogram Indexing based on those regions. We adopt a face shape model to be able to extract facial contour and to estimate the regions of eyes and mouth when those regions are occluded by sunglasses and a mask. To improve the fitting accuracy of the shame model, we adopt 2-step face detection method and conduct fitting several times by varying the initial position of the model instance. To achieve a good performance of the face detection method based on a background model, we enable the system to automatically update the background model. In experiment, we present some experiments on setting parameters of the system with images taken from in our laboratory, and demonstrate the results of recognizing sunglasses and a mask.
There is a growing interest in facial age estimation because many applications require age estimation techniques from facial images. In order to estimate the exact age of a face, a technique for extracting aging features from a face image and classifying the age according to the extracted features is required. Recently, the performance of various CNN-based deep learning models has been greatly improved in the image recognition field, and various CNN-based deep learning models are being used to improve performance in the field of facial age estimation. In this paper, age estimation performance was compared by learning facial features based on various CNN-based models such as AlexNet, VGG-16, VGG-19, ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-152. As a result of experiment, it was confirmed that the performance of the facial age estimation models using ResNet-34 was the best.
Proceedings of the Korean Information Science Society Conference
/
2006.06a
/
pp.121-123
/
2006
얼굴의 표정은 얼굴의 구성요소 같은 기하학적 정보와 조명이나 주름 같은 세부적인 정보들로 표현된다. 얼굴 표정은 기하학적 변형만으로는 실감적인 표정을 생성하기 힘들기 때문에 기하학적 변형과 더불어 텍스쳐 같은 세부적인 정보도 함께 변형해야만 실감적인 표현을 할 수 있다. 표정비율이미지 (Expression Ratio Image)같은 얼굴 텍스처의 세부적인 정보를 변형하기 위한 기존 방법들은 조명에 따른 피부색의 변화를 정확히 표현할 수 없는 단점이 있다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해 서로 다른 조명 조건에서도 실감적인 표정 텍스처 정보를 적용할 수 있는 비선형 피부색 모델 기반의 표정 합성 방법을 제안한다. 제안된 방법은 동적 외양 모델을 이용한 자동적인 얼굴 특징 추출과 와핑을 통한 표정 변형 단계, 비선형 피부색 변화 모델을 이용한 표정 생성 단계, Euclidean Distance Transform (EDT)에 의해 계산된 혼합 비율을 사용한 원본 얼굴 영상과 생성된 표정의 합성 등 총 3 단계로 구성된다. 실험결과는 제안된 방법이 다양한 조명조건에서도 자연스럽고 실감적인 표정을 표현한다는 것을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.