Journal of Korea Society of Industrial Information Systems
/
v.13
no.4
/
pp.56-63
/
2008
Image calibration at preprocessing step is very important for face recognition rate improvement, and background noise deletion affects accuracy of face recognition specially. In this paper, a method is proposed to remove background area utilizing elliptical model at preprocessing step for face recognition rate improvement. As human face has the shape of ellipse, a face contour can be easily detected by using the elliptical model in face images.
얼굴인식의 전처리 단계는 주위의 배경으로부터 얼굴 영상을 분리하여 분석해야 한다. 이러한 전처리 단계는 환경적 요인으로 인해 많은 어려움을 가지고 있다. 또한, 개인별 특징의 차이, 얼굴의 기울어짐과 회전각도 및 영상내의 얼굴 크기 등으로 인해 어려움이 존재한다. 원영상을 입력받아 피부색을 통해 얼굴영역을 검출해 내어 사람의 표정변화에 가장 강인한 코 부분을 추출하여 워터쉐이드 변환을 하여 각 개인마다 다르게 가지고 있는 코의 패턴의 데이터를 저장하여 얼굴 인식에 이용할 수 있는 인자 값으로 이용한다. 따라서, 본 논문에서는 얼굴인식의 특징값을 코의 패턴을 이용하여 인식함으로써 다른 논문에서 제시하고 있는 눈의 특징이나 얼굴 각의 특징의 단점을 극복하여 보다 정화한 얼굴 인식을 할 수 있는 전처리 방법을 제시한다.
본 논문에서는 칼라 CCB 카메라로부터 입력된 얼굴 영상에서 HSI 정보와 눈, 코, 입 등의 얼굴 영역 특징자 및 특징자의 기하학적 특징각을 이용한 얼굴 인식 알고리즘을 제안하였다. 제안한 알고리즘에서는 인간의 시각 체계와 비교적 유사한 HSI좌표계 상에서 피부색에 대한 색상 정보와 명암값 정보를 함에 이용함으로써 얼굴영역 추출의 효율을 높였고, 또한 추출된 얼굴 영역에서 얼굴 인식율 개선을 위해 눈, 코, 입 등의 구조적 위치 정보와 특징자들의 기하학적 특징각을 이용하여 얼굴 인식율을 개선하였다. 제안한 알고리즘에서는 기존의 명암 정보를 이용하는 방법과는 달리 색상 정보와 명암 정보를 함께 이용함으로써 정확한 얼굴 영역의 검출이 가능하였으며 인식 방법에 있어서 특징자들의 기하학적 관계값을 이용함으로써 인식 효율을 개선하였다.
Park Young-Kyung;Seo Hae-Jong;Min Kyoung-Won;Kim Joong-Kyu
The KIPS Transactions:PartB
/
v.13B
no.3
s.106
/
pp.283-294
/
2006
In this paper, we propose a real-time face detection/tracking methodology with Haar wavelets and skin color. The proposed method boosts face detection and face tracking performance by combining skin color and Haar wavelets in an efficient way. The proposed method resolves the problem such as rotation and occlusion due to the characteristic of the condensation algorithm based on sampling despite it uses same features in both detection and tracking. In particular, it can be applied to a variety of applications such as face recognition and facial expression recognition which need an exact position and size of face since it not only keeps track of the position of a face, but also covers the size variation. Our test results show that our method performs well even in a complex background, a scene with varying face orientation and so on.
Proceedings of the Korean Information Science Society Conference
/
2000.04b
/
pp.574-576
/
2000
디지털 영상 처리에서 사람 얼굴 인식은 여러 응용 분야에 요구되어 활발한 연구가 진행되어 왔다. 본 논문에서는 얼굴이 있는 칼라 영상에서 얼굴 영역을 자동으로 추출하기 위한 알고리즘을 기술한다. 영상에 있는 얼굴 및 복잡한 배경과 다른 구성 성분들을 분류시켜 표현할 수 있도록 하기 위해 다변수 히스토그램 기법을 이용하여 얼굴 후보 영역과 머리 후보영역을 추출하고, 머리와 얼굴 후보 영역들간의 상관관계를 고려하여 최종 얼굴 영역을 검출한다. 본 논문에서 제안된 방법의 성능을 검증하기 위하여 인터넷상에 있는 128개의 영상을 입력 데이터로 실험한 결과, 인식 시간이 빠르고 영상의 배경에도 강건한(robust) 효율적인 방법임을 알 수 있었다.
This paper proposes a classifier based on rectangular feature to detect face in real time. The goal is to realize a strong detection algorithm which satisfies both efficiency in calculation and detection performance. The proposed algorithm consists of the following three stages: Feature creation, classifier study and real time facial domain detection. Feature creation organizes a feature set with the proposed five rectangular features and calculates the feature values efficiently by using SAT (Summed-Area Tables). Classifier learning creates classifiers hierarchically by using the AdaBoost algorithm. In addition, it gets excellent detection performance by applying important face patterns repeatedly at the next level. Real time facial domain detection finds facial domains rapidly and efficiently through the classifier based on the rectangular feature that was created. Also, the recognition rate was improved by using the domain which detected a face domain as the input image and by using PCA and KNN algorithms and a Class to Class rather than the existing Point to Point technique.
Proceedings of the Korean Information Science Society Conference
/
2004.10a
/
pp.223-225
/
2004
얼굴 인식 및 검출에 있어서 어려운 문제가 조명의 변화와 포즈의 변화에 따른 성능 면에서의 신뢰성이다. 이러한 상황(Context)의 변화를 고려하여 영상을 처리하기 위하여 얼굴 영상에 주어진 조명의 상황을 SOM으로 분석하며, 영상에 따라 다른 전처리 기법의 필요성에 대해 제안한다. SOM은 비 지도학습으로써 얼굴 이미지들을 수집하여 그룹화 함으로써 상황분석을 위한 알고리즘으로 활용한다 이는 상황분석 기법을 적용하기 위한 응용에 활용할 수 있으며, 적절한 전처리 기법은 얼굴 인식의 성능을 향상시킴을 알 수 있었다.
Proceedings of the Korea Inteligent Information System Society Conference
/
2005.11a
/
pp.526-535
/
2005
우리나라의 주민등록증은 주소지, 주민등록 변호, 얼굴사진, 지문 등 개개인의 방대한 정보를 가진다. 현재의 플라스틱 주민등록증은 위조 및 변조가 쉽고 날로 전문화 되어가고 있다. 따라서 육안으로 위조 및 변조 사실을 쉽게 확인하기가 어려워 사회적으로 많은 문제를 일으키고 있다. 이에 본 논문에서는 주민등록증 영상을 자동 인식할 수 있는 개선된 ART2 기반 RBF 네트워크와 얼굴인증을 이용한 주민등록증 자동 인식 방법을 제안한다. 제안된 방법은 주민등록증 영상에서 주민등록번호와 발행일을 추출하기 위하여 영상을 소벨마스크와 미디언 필터링을 적용한 후에 수평 스미어링을 적용하여 주민등록번호와 발행일 영역을 검출한다. 그리고 4 방향 윤곽선 추적 알고리즘으로 개별 문자를 추출하기 위한 전 단계로 주민등록증 영상에 대해 고주파 필터링을 적용하여 주민등록증 영상 전체를 이진화 한다. 이진화된 주민등록영상에서 COM 마스크를 적용하여 주민등록번호와 발행일 코드를 복원하고 검출된 각 영역에 대해 4 방향 윤곽선 추적 알고리즘으로 개별 문자를 추출한다. 추출된 개별 문자는 개선된 ART2 기반 RBF 네트워크를 제안하여 인식에 적용한다. 제안된 ART2 기반 RBF 네트워크는 학습 성능을 개선하기 위하여 중간충과 출력층의 학습에 퍼지 제어 기법을 적용하여 학습률을 동적으로 조정한다. 얼굴인증은 템플릿 매칭 알고리즘을 이용하여 얼굴 템플릿 데이터베이스를 구축하고 주민등록증애서 추출된 얼굴영역과의 유사도를 측정하여 주민등록증 얼굴 영역의 위조여부를 판별한다.
Proceedings of the Korea Institute of Convergence Signal Processing
/
2000.08a
/
pp.209-212
/
2000
본 논문에서는 칼라 CCD 카메라로부터 입력된 얼굴 영상에서 칼라 정보와 눈, 코, 입 등의 얼굴 영역 특징자 및 턱선의 선형적 특징을 이용한 얼굴 인식 알고리즘을 제안하였다. 제안한 알고리즘에서는 인간의 시각 체계와 비교적 유사한 HSI좌표계 상에서 피부색에 대한 색상 정보와 명암값 정보를 함께 이용함으로써 얼굴영역 추출의 효율을 높였고, 적응적인 추출이 가능하도록 하였다. 또한 추출된 얼굴 영역에서 얼굴 인식율 개선을 위해 눈, 코, 입 등의 구조적 위치 정보와 턱선의 선형적인 특징값을 이용하여 얼굴 인식율을 개선하였다. 제안한 알고리즘에서는 기존의 명암 정보를 이용하는 방법과는 달리 색상 정보와 명암 정보를 함께 이용함으로써 정확한 얼굴 영역의 검출이 가능하였으며 인식 방법에 있어서 구조적 특징자 외에 턱선의 선형적인 관계값을 이용함으로써 인식 효율을 개선하였다.
This paper presents an automatic approach to detect face and facial feature from face images based on the color information and deformable model. Skin color information has been widely used for face and facial feature diction since it is effective for object recognition and has less computational burden, In this paper, we propose how to compensates varying light condition and utilize the transformed YCbCr color model to detect candidates region of face and facial feature from color images, Moreover, the detected face facial feature areas are subsequently assigned to a initial condition of active contour model to extract optimal boundaries of face and facial feature by resolving initial boundary problem when the active contour is used, The experimental results show the efficiency of the proposed method, The face and facial feature information will be used for face recognition and facial feature descriptor.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.