• Title/Summary/Keyword: 억제유도치료

Search Result 546, Processing Time 0.034 seconds

Possibility of Cancer Treatment by Cellular Differentiation into Adipocytes (지방세포로의 분화를 통한 악성 종양의 치료 가능성)

  • Byeong-Gyun Jeon;Sung-Ho Lee
    • Journal of Life Science
    • /
    • v.33 no.6
    • /
    • pp.512-522
    • /
    • 2023
  • Cancer with unlimited cell growth is a leading cause of death globally. Various cancer treatments, including surgery, chemotherapy, radiation therapy, immunotherapy, and targeted therapy, can be applied alone or in combination depending on the cancer type and stage. New treatments with fewer side effects than previous cancer treatments are continually under development and in demand. Undifferentiated stem cells with unlimited cell growth are gradually changed via cellular differentiation to arrest cell growth. In this study, we reviewed the possibility of treating cancer by using cellular differentiation into the adipocytes in cancer cells. In previous in vitro studies, oral antidiabetic drugs of the thiazolidinedione (TDZ) class, such as rosiglitazone and pioglitazone, were induced into the adipocytes in various cancer cell lines via increased peroxisome proliferator-activated receptor-γ (PPAR γ) expression and glucose uptake, which is the key regulator of adipogenesis and the energy metabolism pathway. The differentiated adipogenic cancer cells treated with TDZ inhibited cell growth and had a less cellulotoxic effect. This adipogenic differentiation treatment suggests a possible chemotherapy option in cancer cells with high and abnormal glucose metabolism levels. However, the effects of the in vivo adipogenic differentiation treatment need to be thoroughly investigated in different types of stem and normal cells with other side effects.

Synergistic Effects of 5-Fluorouracil (FU) and Curcumin on Human Cervical Cancer Cells (5-fluorouracil과 curcumin의 복합투여에 의한 자궁암세포의 성장억제와 p53유전자 발현의 상승 효과)

  • Ahn, Seong-Ho;Kim, Dong-Heui;Kang, Jung-Hoon;Lee, Myeong-Seon
    • Applied Microscopy
    • /
    • v.40 no.4
    • /
    • pp.229-235
    • /
    • 2010
  • Cervical cancer is associated with low antioxidant status. It has a high prevalence especially amongst woman in Asia and is a leading cause of cancer death. Cancer chemotherapy in vivo improved in cases with high p53 expression in the tumor tissue. The restoration of p53 levels could be a potential strategy to increase chemoresponsiveness. Under circumstances where damage is extensive, p53 plays a direct role in trigering apoptosis. To investigate the effect of curcumin (CMN) as an antioxidant agent on anticancer agent 5-fluorouracil (5FU) induced apoptosis and p53 expression, HPV-18 positive HeLa cells were treated with noncytotoxic amounts of antioxidant. Curcumin induced apoptosis in cervical cancer cells. Morphological hallmarks of apoptosis such as nuclear fragmentation and internucleosomal fragmentation of DNA were observed. CMN caused upregulation of p53 expression, evident from Western blotting data and also increased the susceptibility/apoptosis induced by 5FU. These results show that increasing drug sensitivity of cervical cancer cells by upregulation of p53 using CMN is novel approach and could have a possible therapeutic potential in cervical cancer.

Sulfasalazine Induces Apoptosis and Cell Cycle Arrest in RAW 264.7 Macrophages (마우스 대식세포에서 설파살라진의 세포사멸 및 세포주기 정체에 미치는 영향 연구)

  • Seong Mi Kim;Sohyeon Park ;Jin-Kyung Kim
    • Journal of Life Science
    • /
    • v.33 no.10
    • /
    • pp.767-775
    • /
    • 2023
  • Sulfasalazine is a disease-modifying antirheumatic abiotic agent. It is a derivative of aminosalicylic acid and has been used for the treatment of various inflammatory diseases, such as rheumatoid arthritis, ulcerative colitis, and Crohn's disease, since it was first synthesized in 1941 and approved as a medicine in the United States in 1950. However, its mechanism of action has not yet been clearly identified. In this study, the effects of sulfasalazine on cell survival, apoptosis, and cell cycle progression in macrophages, which are major immune cells that regulate inflammatory responses, were investigated using mouse macrophage RAW 264.7 cells. Sulfasalazine inhibited the viability of RAW 264.7 cells in a dose-dependent manner, starting at a concentration of 0.25 mM. Annexin-V staining was used to confirm that the decrease in cell viability was due to apoptosis, and the number of Annexin-V-positive cells increased significantly at a concentration of 0.25 mM or higher. The effect of sulfasalazine on the expression of key proteins that regulate the G0/G1 phase of the cell cycle was also investigated. Sulfasalazine treatment significantly increased the expression of the cyclin-dependent kinase inhibitors p21 and p27 in RAW 264.7 cells. Although sulfasalazine is frequently used as a control drug in studies on inflammatory diseases, such as inflammatory colitis and rheumatoid arthritis, studies on its effect on macrophages are very limited. Therefore, the results of this study are expected to provide vital information on the use of sulfasalazine as a disease treatment.

Anti-arthritic Activity of Artemisia princeps Pampanini on Complete Freund's Adjuvant-induced Arthritis (Artemisia princeps Pampanini의 complete freund's adjuvant 유발 관절염에 대한 개선 효과)

  • Kim, Ha-Rim;Kim, Sol;Kim, Seon-Young
    • Journal of Life Science
    • /
    • v.31 no.8
    • /
    • pp.736-744
    • /
    • 2021
  • Artemisia princeps Pampanini is an herbal medicine widely used to immune function-related diseases, such as anti-oxidative, anti-inflammatory, and antibacterial agents. In this study, we investigated the anti-inflammatory effects of AP extract and underlying mechanisms were evaluated in RAW 264.7 cells. The effects of AP extract were also studied in a complete Freund's adjuvant (CFA)-induced arthritis and lipopolysaccharide (LPS)-induced inflammation mouse model. In RAW 264.7 cells, AP extracts significantly inhibited the LPS-induced nitric oxide (NO) production and inducible NO synthase and cyclooxygenase-2 protein expression. The LPS-induced phosphorylation of mitogen-activated protein kinases and nuclear factor-κB was also significantly blocked by AP extract in RAW 264.7 cells. Oral administration of AP extract suppressed the increase in mouse paw edema and spleen index compared to CFA-treated mice group. Histologically, the infiltration of inflammatory cells was increased in cartilage and synovium in the CFA-treated mouse group, whereas it was suppressed in the AP extract-administered group. Furthermore, AP extract treatment significantly reduced the inflammatory cytokine, tumor necrosis factor-α, levels in CFA and LPS-treated mouse. In conclusion, the anti-inflammatory and anti-arthritis effect of AP extract was confirmed in both in vitro and in vivo models, suggesting that Artemisia princeps Pampanini may be a candidate material for arthritis treatment.

Animal Model for Regeneration of Olfactory Sensory Neurons (후각신경세포의 손상 및 재생 연구모델의 융합연구)

  • Jeong, Yun-Mi;Park, Jong-Su;Kim, Cheol-Hee;You, Kwan-Hee
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.2
    • /
    • pp.61-67
    • /
    • 2016
  • The olfactory system is an important model for the study of neuronal degeneration and regeneration, including neuronal diseases. When the olfactory sensory neurons are damaged by nerve injury or are exposed to environmental factors, they degenerate and are replaced by regenerating neurons. To monitor neuronal degeneration in living animal, we established an olfactory-specific GFP transgenic zebrafish. The effects of Triton X-100 or sodium acetate on the olfactory system were examined. A significant decrease in the number of GFP-positive olfactory sensory neurons was observed after chemical lesion. We found a recovery of GFP-positive neurons by 2 days posttreatment. From these results, we expect that further studies of olfactory degeneration and regeneration using this transgenic zebrafish will provide important advances for the study of neuronal degeneration and regeneration.

Emodin from Polygonum cuspidatum showed Angiogenesis Inhibiting Activity in vitro (호장근으로부터 분리된 emodin의 혈관신생 억제 활성)

  • Lee, Tae-Kyoo;Kim, Jong-Hwa;So, June-No
    • Applied Biological Chemistry
    • /
    • v.46 no.1
    • /
    • pp.50-54
    • /
    • 2003
  • Polygonum cuspidatum has been used as a fork medicine for a long time. Emodin was purified from the root of P. cuspidatum by thin layer chromatography (TLC) and preparative high perfomance liquid chromatography (HPLC). The effects of emodin on the migration of endothelial cells and in vitro angiogenesis stimulated with vascular endothelial cell growth factor (VEGF) were examined, using human umbilical vein endothelial cells (HUVECs) and porcine pulmonary arterial endothelial cells (PPAECs). Emodin potently inhibited the VEGF-induced migration of (HUVECs) at relatively low cocentrations $(0.1-10\;{\mu}g/ml)$; the inhibition of endothelial cells by emodin was 75.4% at $0.1\;{\mu}g/ml$ and about 90% at $1\;{\mu}g/ml$. Emodin also inhibited VEGF-induced sprout formation in vitro at concentrations of $0.1-10\;{\mu}g/ml$. Emodin was also evaluated for the inhibitory potential on in vivo angiogenesis in a growing chick embryo chorioallantoic membranes (CAM). At a concentration of $1.0\;{\mu}g/ml$ Per disc, emodin was able to induce avacular zone in the CAMs. These findings suggest that emodin is a potent angiogenesis inhibitor and P. cuspidatum is a useful herb in the development of therapeutics for angiogenesis dependent diseases.

Role of NFAT5 in Osteogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells (인체 지방 유래 중간엽 줄기세포의 골분화 조절 기전에서 NFAT5의 역할)

  • Lee, Sun Young;Yang, Ji won;Jung, Jin Sup
    • Journal of Life Science
    • /
    • v.23 no.4
    • /
    • pp.471-478
    • /
    • 2013
  • Human adipose tissue-derived mesenchymal stem cells (hADSCs) have therapeutic potential, including the ability to self-renew and differentiate into multiple lineages. Understanding of molecular mechanisms of stem cell differentiation is important for improving the therapeutic efficacies of stem cell transplantation. In this study, we determined the role of nuclear factor of activated T cells (NFAT5) in the osteogenic differentiation of hADSCs. The down-regulation of NFAT5 expression by the transfection of a specific siRNA significantly inhibited osteogenic differentiation of hADSCs and decreased the activity of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-${\kappa}B$) promoter without affecting their proliferation and adipogenic differentiation. The inhibition of NFAT5 expression inhibited the basal and Tumor Necrosis Factor ${\alpha}$ (TNF-${\alpha}$) induced activation of NF-${\kappa}B$, but it did not affect TNF-${\alpha}$-induced degradation of the $I{\kappa}B$ protein. These findings indicate that NFAT5 plays an important role in the osteogenic differentiation of hADSCs through the modulation of the NF-${\kappa}B$ pathway.

Evaluation of the Cell-Mediated Immunity in Treatment Failure Pulmonary Tuberculosis (치료실패 폐결핵 환자의 세포성면역반응에 관한 연구)

  • Park, Jeong-Kyu;Park, Jang-Seo;Kim, Hwa-Jung;Jo, Eun-Gyeong;Min, Dul-Lel;Lim, Jae-Hyun;Suhr, Ji-Won;Paik, Tae-Hyun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.47 no.1
    • /
    • pp.13-25
    • /
    • 1999
  • Background: Ineffective cell-mediated immune response in human tuberculosis is associated with a depressed Thl cytokine response and reduced production of IFN-$\gamma$. Most persons infected with Mycobacterium tuberculosis are healthy tuberculin reactors with protective immunity, but a minority with ineffective immunity develop extensive pulmonary tuberculosis. The cell-mediated immune response is an important aspect of host resistance to mycobacterial infection and is believed to be tightly regulated by a balance between Th1 cytokines including IFN-$\gamma$, IL-12, IL-18, regulated on activation, normal T cell expressed and secreted (RANTES) and Th2 counterparts such as IL-4, monocyte chemoattractant protein-l (MCP-l). Methods: Proliferation and mRNA expression of IFN-$\gamma$, RANTES and MCP-l by RT-PCR in peripheral blood mononuclear cells (PBMCs) in response to in vitro stimulation with mycobacterial antigens were compared in pulmonary tuberculosis patients with cured and treatment failure and in tuberculin-positive and tuberculin-negative healthy subjects. Results: Defective proliferative responsiveness to aqueous TSP antigen was involved with treatment failure tuberculosis patients. Aqueous TSP antigen-induced IFN-$\gamma$ and RANTES mRNA expression was decreased in treatment failure tuberculosis patients compared with healthy tuberculin reactors and cured tuberculosis patients (23.1 % versus 90.0% for IFN-$\gamma$ and 46.2% versus 70.0% versus 46.2% for RANTES). The frequency of MCP-l mRNA expression to aqueous TSP antigen in treatment failure tuberculosis patients was greater than in healthy tuberculin reactors and cured tuberculosis patients (76.9% versus 40.0%). Conclusion: The increasing expression of MCP-1 mRNA in response to aqueous TSP antigen might be predicted to favor Th1 responses and restricted Th1 responses in treatment failure of pulmonary tuberculosis.

  • PDF

Ghrelin Attenuates Dexamethasone-induced T-cell Apoptosis by Suppression of the Glucocorticoid Receptor (덱사메타손에 의해 유발된 흉선 T세포사멸에 대한 그렐린의 세포사멸억제효과)

  • Lee, Jun Ho
    • Journal of Life Science
    • /
    • v.24 no.12
    • /
    • pp.1356-1363
    • /
    • 2014
  • Ghrelin is a 28 amino acid orexigenic peptide hormone that is secreted predominantly by tX/A cells in the stomach, and it plays a major role in energy homeostasis. Activated ghrelin has an n-octanoyl group covalently linked to the hydroxyl group of the Ser3 residue, which is critical for its binding to the G-protein coupled growth hormone secretagogue receptor-1a (GHS-R1a). According to recent reports, both ghrelin and its receptor, GHS-R1a, are expressed by a variety of immune cells, including T- and B-lymphocytes, monocytes, and dendritic cells, and ghrelin stimulation of leukocytes provides a potent immunomodulatory signal controlling systemic and age-associated inflammation and thymic involution. Here, we report that ghrelin protected murine thymocytes from dexamethasone (DEX)-induced cell death both in vivo and in vitro. Subsequently, we explored the molecular mechanisms of the antiapoptotic effect of ghrelin. According to our experiments, ghrelin inhibited the expression of proapoptotic proteins via the regulation of glucocorticoid receptor (GR) phosphorylation. As a result, ghrelin inhibited the proapoptotic activation of proteins, such as Caspase-3, PARP, and Bim. These data suggest that ghrelin, through GHS-R, inhibits the pathway to apoptosis by regulation of the proapoptotic protein activation signal pathway. They provide evidence that blocking apoptosis is an essential function of ghrelin during the development of thymocytes.

Anti-metastatic Effect of Garlic Hexane Extract on Lung Metastasis Induced by Melanoma B16F10 Cells in Mice (Melanoma B16F10 cell에 의해서 유도된 mouse모델에서 마늘 헥산 추출물의 암전이에 억제 효과)

  • Ko, Min Jung;Rajasekar, Seetharaman;Wang, Ziyu;Li, Mei;Kwak, Jung Ho;Park, Young Hoon;Son, Beung Gu;Kang, Jum Soon;Choi, Young Whan
    • Journal of Life Science
    • /
    • v.26 no.2
    • /
    • pp.259-264
    • /
    • 2016
  • Metastatic cancer is one of the main causes of cancer-related death since they rarely respond to available treatments. There is epidemiologic evidence that high garlic consumption decreases the incidence of cancer. Recent studies of our laboratory have revealed that a garlic-extracts is effective in suppressing metastasis. For experimental metastasis, C57BL/6 mice were injected intravenously with melanoma B16F10 cells in the tail vein, and were orally administered various concentrations (0, 50, 100 or 200 mg/kg body weight) of garlic hexane extract (GHE) for 21 days. The incidence and the area of the melanoma cell colony occupied by the poorly differentiated carcinoma were significantly lower in dose-dependent in 50, 100 and 200 mg/kg BW GHE - treated mice compared with control mice. In conclusion, the results of the present study show that GHE administration prevents lung metastasis in C57BL/6 mice.