• Title/Summary/Keyword: 억새

Search Result 263, Processing Time 0.026 seconds

The Energy Flow and Mineral Cycles in a Zoysia japonica and a Miscanthus sinensis Ecosystem on Mt. Kwanak 6. The Cycles of Ca, Mg, Na (관악산의 잔디와 억새 생태계에 있어서 에너지의 흐름과 무기물의 순환 6.Ca,Ma,Na의 순환)

  • 김정석;장남기
    • Asian Journal of Turfgrass Science
    • /
    • v.10 no.2
    • /
    • pp.105-115
    • /
    • 1996
  • To find out the mineral cycles of calcium, magnesium and sodium in dynamic grassland cosystems in a steady state condition, this investigation was conducted along the northwest side on Mt. Kwanak. The experimental results may he suromarized on the communities of a Zoysia japonica and a Miscanthus sinesis as follows. As compared with some properties of the surface soils among two semi-natural grasslands, cal- cium (Ca) was greater quantity in a Zoysia japonica, whereas, in a Miscanthus sicensis, sodium (Na)and magnesium (Mg) were greater in Mt. Kwanak. For the case of steady production and release, the ratio of annual mineral production to the amount accumulated on the top of mineral soil in a steady state provides the estimates of release constant k. The release constants of Ca, Mg and Na of the litter were 0.42, 0.25 and 0.29 in the Zoysia japonica grassland, and were 0.41, 0.54 arid 0.62 in the Miscanthus sinensis grassland, respect- ively. The half times of Ca, Mg and Na required for the release or accumulation of the litter on the grassland were 1.65, 2.77 and 2.39 in the Zoysia japonica, and were 1.69, 1.28 and 1.12 in the Miscauthus sinensis, respectively. The increasing order of the turnover parameters of the elements was Ca, Na and Mg in the Zoysia japonica grassland, and was Na, Mg and Ca in the Miscanthus Si nens is grassland. The amounts of annual cycles for Ca, Mg, Na in the grassland ecosystem under the steady-state conditions were 1.29, 0.20 and 0.12 g /m$^2$ in the Zoysia japonica grassland and 3.91, 1.04 and 0.61 g /m$^2$ in the Miscanthus sinensis grassland.

  • PDF

Monitoring Biota in Giant Miscanthus Fields (거대억새 재배단지 조성에 따른 생물상 모니터링)

  • Kang, Ku;Hong, Seong-Gu;Ji, Kwang-Jae;Choi, June-Yeol;Lee, Hyo-HyeMi;Kim, Han-Joong;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.1
    • /
    • pp.89-99
    • /
    • 2014
  • The cultivation of biomass crops is now global demand for decreasing emissions of carbon dioxide ($CO_2$) from fossil fuel. Miscanthus species have been studied as a suitable crop for biomass production, due to its characteristics of fast growth and high biomass. In Korea, Miscanthus species have gained wide attention as an option for biomass production alternative to fossil fuels, recently. New strain of giant Miscanthus has been developed and two large trial sites for the giant Miscanthus production were built in the lower reaches of the Geum River. To evaluate the ecological influence of the giant Miscanthus as an bioenergy crop for the future, we investigated the impact of the construction of the giant Miscanthus production fields on the biota and also compared it with biota in paddy fields near the study sites. The biota including plants, amphibians, reptiles, mammals, avifauna, insects, and bugs was investigated. The plant diversity of the giant Miscanthus production fields was poorer than the paddy fields because the high height of the giant Miscanthus might hinder the growth of other plants. However, the giant Miscanthus production fields serves habitat to animals, leading to rich diversity of animals including avifauna, insects, and bugs. The rich diversity of the animals in the giant Miscanthus production fields coincides with the fact that the giant Miscanthus was grown without any pesticide, herbicide, and fertilizer. This study showed that the giant Miscanthus can influence on biota and further long term study is needed to elucidate the interaction between the diversity of biota and the giant Miscanthus.

Changes of Morphological and Growth Characteristics Collected Miscanthus Germplasm in Korea (국내 억새 유전자원 수집 후 형태 및 생육 특성 변화)

  • Song, Yeon-Sang;Lee, Ji-Eun;Moon, Youn-Ho;Yu, Gyeong-Dan;Choi, In-Seong;Cha, Young-Lok;Kim, Kwang-Soo
    • Weed & Turfgrass Science
    • /
    • v.7 no.1
    • /
    • pp.22-34
    • /
    • 2018
  • Miscanthus has been considered as the most promising bioenergy crop for lignocellulosic biomass production. In Korea, M. sacchariflorus and M. sinensis can be found easily in all regions. It is a great advantage to utilize as important species with respect to genetic and cross-breeding programs materials for creation of novel hybrids. For successful breeding programs, it is important to precisely understand the variability of morphological and growth characteristics among Miscanthus species as breeding parent materials. In this study, morphological and growth characteristics were observed in 960 germplasms of two Miscanthus species (M. sacchariflorus and M. sinensis) for growing seasons over three years. Due to the inherent characteristics of these species, the germplasm of M. sacchariflorus among the collected germplasm were reduced in plant height than in the collection area. In M. sinensis, the plant height of germplasm collected mainly from Jeju-do increased more than those collected from collection area. Sixty-one of the collected 960 germplasms were selected and investigated to the morphological characteristics. Based on the investigated morphological data, the phylogenic tree was developed. As the results, it was confirmed that there exist germplasm in which the characteristics of M. sacchariflorus and M. sinensis are mixed. This study of Miscanthus may provide an important information in order to expedite the introduction as breeding materials for creation of new hybrid.

Study of Preparation and Characterization of Microcrystalline cellulose from Miscanthus sinensis (미세결정셀룰로오스의 제조를 위한 억새 바이오매스의 처리 및 특성연구)

  • Sung, Yong-Joo;Lee, Young-Ju;Lee, Joon-Woo;Kim, Se-Bin;Park, Gwan-Soo;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.4
    • /
    • pp.56-63
    • /
    • 2010
  • Microcrystalline cellulose (MCC) was prepared from Miscanthus in this study. Two pulping methods, soda pulping and alkaline sulfite pulping were applied as a pretreatment process. After pulping, two different bleaching processes such as $ClO_2$ treatment followed by $H_2O_2$ treatment and $O_3$ treatment followed by $H_2O_2$ treatment were carried out. Two concentration of $H_2SO_4$, 47% and 57% were applied to the purified Miscanthus cellulose as a acid hydrolysis process to make MCC. The crystallinity index and morphological properties of the produced MCC were evaluated with X-ray diffractometer and scanning electron microscopy. The MCC originated from the soda pulping sample showed the higher crystallinity index than that originated from the alkaline sulfite pulping sample. The two stages of treatmen twith $O_3$ and $H_2O_2$ resulted in the higher purified cellulose products.

The Energy Flow and Mineral Cycles in a Zoysia japonica and a Miscanthus sinensis Ecosystem on Mt. Kwanak 7. The Cycles of Mn and Zn (관악산의 잔디와 억새 생태계에 있어서 에너지의 흐름과 무기물의 순환 7. Mn,Zn의 순환)

  • 강경미;김정석;장남기
    • Asian Journal of Turfgrass Science
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 1997
  • This study was performed to find out the mineral cycles of manganese and zinc in dynamic grassland ecosystems in a steady state condition at the northwest side on Mt. Kwanak. The experimental results may be summarized on the communities of a Zoysia japonica and a Miscanthus sincnsis as follows. As compared with some properties of the surface soils among two semi-natural grasslands, manganese and zinc was greater quantity in a Miscanthus sincnsis than in a Zoysia japonica on Mt. Kwana For the case of steady procluction and release, the ratio of annual mineral production to the amount accumulated on the top of mineral soil in a steady state provides the estimates of release constant k. The release constants of Mn and Zn of the litter were 0.19 and 0. 14 in the Zoysia japon- ica grassland, and were 0.44 and 0.41 in a Miscanthus sincnsis grassland, respectively. The halftimes of Mn and Zn required for the release or accumulation of the litter on the grassland were 3. 65 and 4.95 years in the Zoysia japonica, and were 1.57 and 1.69 years in the Miscanthus sincnsis, respectively. The amounts of annual cycles for Mn and Zn in the grassland ecosystem under the steady-state conditions were 58.60 and 21.46 mg /$m^2$ in a Zoysia japonica, and were 372.12 and 321.49 ing /m$^2$ in a Miscanthus sincnsis grassland. Key words: Zoysia japonica. Miscanthus sincnsis, Mt. Kwanak, Manganese, Zinc, Mineral cycles.

  • PDF

Forest Vegetation of Upper Zone in Gyeryongsan National Park (계룡산 상부 지역의 산림식생)

  • 김효정;이미정;이규석;박관수;송호경
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.1
    • /
    • pp.127-132
    • /
    • 2004
  • The purpose of this study was to understand plant community structure in upper zone of Gyeryongsan National Payk. Total 51 plots were set up and surveyed toy this study. The fifty one plots were classified into four communities such as Quereus mongolica community, Carpinus laxiflora community, Pinus densiflora community, and Quercus variabizis community. The Quercus mongotica community were found in 29 plots of the 51 plots and the differential species in the community weve Quercus mongolica, Acer pseudosieboldianum var. koreanum, Arisaema amurense var. serratum, Diarrhena japonica, and Saussurea gyacilis. The Carpinus laxiflora community were found in 10 plots of the 51 plots and the differential species in the community were Carpinus laxiflora, Carpinus cordata, Cornus eontroversa, Carex siderosticta, and Hydrangea serrata for. acuminata. The Pinus densiflora community were found in 7 plots of the 51 plots and the differential species in the community were Pinus densiflora, Lespedeza maximowiczii, Rubus crataegifotius, Miseanthus sinensis, Persicaria filiforme, Artemisia keiskeana, and spodiopogon sibiricus. the Quereus vuriabilis community were found in 5 plots of the 51 plots and the differential species in the community were Quercus variabilis.

Current status on Miscanthus for biomass (바이오매스로서의 억새에 대한 연구 동향)

  • Seo, Sang-Gyu;Lee, Jeong-Eun;Jeon, Seo-Bum;Lee, Byung-Hyun;Koo, Bon-Cheol;Suh, Sae-Jung;Kim, Sun-Hyung
    • Journal of Plant Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.320-326
    • /
    • 2009
  • The carbon dioxide concentration of the atmosphere is projected to increase by almost 50% over the first 50 years of this century. The major cause of this increase is continued combustion of fossil fuels. As a result, the significant changes in climate that have already occurred will be amplified, in particular a global temperature increase. Renewable energy production has a central role to play in abating net $CO_2$ emissions to a level that will arrest the development of global warming. Especially, biomass crops are becoming increasingly important as concerns grow about climate change and the need to replace carbon dioxideproducing fossil fuels with carbon-neutral renewable sources of energy. To succeed in this role, biomass crop has to grow rapidly and yield a reliable, regular harvest. A prime candidate is Miscanthus, or Asian elephant grass, a perennial species that produces over 3 metres of bamboo-like stems in a year. Miscanthus species are typically diploid or tetraploid. Hybrids between species with different ploidy levels result in the highly productive triploid hybrids, M. ${\times}$ giganteus. Here we will detail the Miscanthus characteristics desired of a biomass fuel crop.

Dissolution Characteristics and Regenerated Miscanthus Sinensis Holocellulose Film Prepared by Dissolving the LiBr Solution (LiBr 수용액으로 용해시켜 제조한 거대억새 홀로셀룰로오스 용해 및 재생 필름특성)

  • Yang, Ji-Wook;Kwon, Gu-Joong;Hwang, Kyo-Jung;Hwang, Won-Jung;Hwang, Jae-Hyun;Kim, Dae-Young
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.6
    • /
    • pp.89-97
    • /
    • 2015
  • In this study, dissolution characteristics of 60% LiBr aqueous solution for Miscanthus sinensis holocellulose in accordance with heating time and characteristics of regenerated films were analyzed. Miscanthus sinensis holocellulose was made by peracetic acid method. During the dissolution of 60% LiBr solution for the holocellulose, the dissolution was started from the tip of the cellulose fiber after about 7 minutes, and proceeded as it swollen like a balloon. A lot of Si was identified by analyzing hollocellulose regenerated film through SEM/EDS. Cross section of regenerated film as dissolution time till 40 minutes of dissolution showed multilayered structure and fiber orientation. But after 40 minutes, multilayered structure and fiber orientation was not observed. The crystal structure of the holecellulose was transformed cellulose I into cellulose II. Therefore, dissolution for 20 minutes with 60% LiBr solution in the condition of $190^{\circ}C$ hot plate was shown as an optimum condition to manufacture the holocellulose regenerated film.

Biochemical Methane Potential Analysis for Anaerobic Digestion of Giant Miscanthus (Miscanthus sacchariflorus) (거대억새(Miscanthus sacchariflorus)의 혐기소화를 위한 메탄생산 퍼텐셜 분석)

  • Yoo, Jung-Suk;Kim, Chang-Hyun;Yoon, Young-Man
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.1
    • /
    • pp.29-35
    • /
    • 2017
  • BACKGROUND: This study was carried out to assess a biochemical methane potential of giant miscanthus (Miscanthus sacchariflorus) which was a promising candidate energy crop due to a high biomass productivity, in order to utilize as a feedstock for the biogas production. METHODSANDRESULTS: Giant miscanthus was sampled the elapsing drying time of 6 months after harvesting. TS (Total Solid) and VS (Volatile Solid) contents were 94.7 and 90.8%. And CP (Crude Protein), EE (Ether Extracts), and CF (Crude Fiber) contents of giant miscanthus were 1.4, 0.46, and 46.12%, respectively. In the organic composition of giant miscanthus, the NDF (Neutral Detergent Fiber) representing cellulose, lignin, and hemicellulose contents showed 86.88%, and the ADF (Acid Detergent Fiber) representing cellulose and lignin contents was 62.91%. Elemental composition of giant miscanthus showed 47.75%, 6.44%, 41.00%, and 0.28% for C, H, O, and N, respectively, and then, theoretical methane potential was obtained to $0.502Nm^3kg^{-1}-VS_{added}$. Biochemical methane potential was assessed as the range of $0.154{\sim}0.241Nm^3kg^{-1}-VS_{added}$ resulting the lower organic biodegradability of 30.7~48.0%. CONCLUSION: Therefore the development of pretreatment technology of the giant miscanthus was needed for the improvement of anaerobic digestability.

Study on Botanical Composition of Native Pasture in Cheju by Quadrat Method -Especially at 200m above sea level- (제주도 방목용 야초지의 식생조사에 관한 연구 -해발 200m를 중심으로-)

  • 양창범;정창조
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.9 no.1
    • /
    • pp.56-61
    • /
    • 1989
  • A vegetation survey of the native pasture was conducted in Cheju from July to September, 1980. The purpose of this investigation were, to determine the botanical composition of the native pasture and to estimate how they can be improved to the feed resources of livestock industry. The results obtained are summarized as follows: 1. Grass species existed in native pasture were 64 species with Pwceae 13, Fabaceae 8, Carduacea 12 and other 31. Most of them were identified as perennial grasses. 2. Botanical composition of major grass species were Imperata cylindrim 32.7 %, Pteridium aquilinum 18.9 70, Miscanthus sinensis 8.4 %, and Arternisia japonicn 2.8 % respectively. 3. The average dry matter yield of forage taken on the native pasture was 383 kg per 10a and these yields were increased as the growing stages progressed. 4. Seasonal distribution of edible plants were increased as the growing stages progressed.

  • PDF