• 제목/요약/키워드: 어휘-의미 패턴

검색결과 53건 처리시간 0.049초

코퍼스를 이용한 상하위어 추출 연구 (A Study of the Automatic Extraction of Hypernyms arid Hyponyms from the Corpus)

  • 방찬성;이해윤
    • 인지과학
    • /
    • 제19권2호
    • /
    • pp.143-161
    • /
    • 2008
  • 본 논문에서는 코퍼스를 이용하여 어휘들의 상하위 관계 패턴들을 추출하는 방법을 제안한다. 기존 연구들에서는 어순 교체가 자유로운 한국어의 특성으로 인해 주로 사전의 정의문을 이용하여 어휘들의 의미관계 패턴들을 추출하는 방법을 취하고 있으나, 본 논문에서는 코퍼스를 이용하여 보다 다양한 의미관계 패턴들을 추출하여 제시하고자 한다. 이를 위해 먼저 기존의 사전들을 이용해 상하위어 쌍들의 목록을 선정하였다. 다음 이 목록의 어휘 쌍들을 포함하는 문장들을 코퍼스에서 추출한 이후, 이로부터 다시 체계적으로 패턴화 할 수 있는 문장들을 추출하여 21 가지 상하위 관계 패턴들로 일반화하였다. 21가지 패턴들을 정규식으로 표현한 뒤 각각 동일한 패턴들을 가진 문장들을 코퍼스에서 다시 추출한 결과 57%의 정확률이 측정되었다.

  • PDF

사용자 어휘지능망과 자동문제생성기술을 이용한 한국어 어휘학습시스템 (Korean Word Learning System Using User-Word Intelligent Network and Automatic Question Generation Technique)

  • 최수일;임지희;최호섭;옥철영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2006년도 제18회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.15-21
    • /
    • 2006
  • 본 논문에서는 올바른 한국어 생활과 한국어 실력 향상을 위하여, 한국어 어휘에 대한 풍부한 정보를 담고 있는 한국어사전, 사용자 어휘지능망(User-Word Intelligent Network : U-WIN)등의 언어자원을 이용한 자동문제생성기술을 소개하고, 이를 이용한 한국어 어휘학습시스템을 제시한다. 대부분의 학습시스템에서 사용하는 문제 은행식 출제 방식의 문제점을 해소할 수 있는 하나의 방법으로서, 기존의 한국어 어휘문제의 문항을 분석하여 8가지 문제 유형으로 재편성하고, 각 유형별 자동 문제 생성패턴에 따라 언어자원이 가지고 있는 한국어 어휘의 형태적 정보, 의미적 정보를 이용하여 한국어 어휘 문제를 자동 출제하는 한국어 어휘학습시스템을 구현하였다.

  • PDF

한국어 시·청각 동음동철이의 어절 재인에 나타나는 어휘-의미 상호작용 (Lexico-semantic interactions during the visual and spoken recognition of homonymous Korean Eojeols)

  • 김준우;강귀영;유도영;전인서;김현경;남현민;신지영;남기춘
    • 말소리와 음성과학
    • /
    • 제13권1호
    • /
    • pp.1-15
    • /
    • 2021
  • 본 연구는 중의성을 가진 어휘가 심성 어휘집에 표상된 방식과 감각 양상에 따른 처리 과정을 알아보기 위하여 한국어 동음동철이의 어절의 시·청각 재인 과정을 조사하였다. 청각 어절 판단 과제(실험 1)와 시각 어절 판단 과제(실험 2)를 이용한 두 실험에서 두 가지 이상의 의미를 가진 동음동철이의 어절(예: '물었다')과 단일한 의미만을 가진 통제 어절(예: '고통을')이 사용되었다. 어절 자극들의 누적 빈도는 조작하는 한편, 각 동음동철이의 어절의 다양한 의미가 가지는 상대적 빈도는 통제하였다. 어절 판단 과제를 사용한 두 실험 모두에서 유의한 빈도의 주효과와 함께 의미 수에 따른 어절 유형과 빈도 간의 상호작용이 발견되었다. 실험 1에서 청각적으로 제시된 동음동철이의 어절은 저빈도 조건에서 단의 어절에 비해 반응시간이 빠른 중의성 이득 효과가 나타난 반면, 고빈도 조건에서는 이와 반대로 비이득 효과가 나타났다. 마찬가지로 시각적으로 제시된 실험 2의 자극에서도 유사한 상호작용 패턴이 발견되었다. 본 연구 결과는 시각 및 청각 양상 모두에서 어휘-의미 처리가 상호의존적으로 이루어짐을 보여주며, 이는 의미 처리가 감각 의존적 단계보다는 일반적 어휘 지식 처리 단계에서 이루어질 가능성을 시사한다. 이와 더불어 의미 선택 과정에서 동음동철이의 어절이 가지는 다양한 의미의 후보군은 어절의 빈도가 상대적으로 낮을 때에만 촉진적 피드백을 제공함을 보여준다.

명사-동사 공기패턴을 이용한 문서 자동 요약 (Automatic Text Summarization using Noun-Verb Cooccurrence Pattern)

  • 남기종;이창범;강대욱;박혁로
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 추계학술발표논문집 (상)
    • /
    • pp.611-614
    • /
    • 2002
  • 문서 자동 요약은 입력된 문서에 대해 컴퓨터가 자동으로 요약을 생성하는 과정을 의미한다. 즉, 컴퓨터가 문서의 기본적인 내용을 유지하면서 문서의 복잡도 즉 문서의 길이를 줄이는 작업이다. 효율적인 정보 접근을 제공함과 동시에 정보 과적재를 해결하기 위한 하나의 방법으로 문서 자동요약에 관한 연구가 활발히 진행되고 있다. 본 논문의 목적은 어휘 연관성 정보를 이용하여 한국어 문서를 자동으로 요약하는 효율적이며 효과적인 모형을 개발하는 것이다. 제안한 방법에서는 신문기사와 같은 특정 부류에 국한되는 단어간의 어휘연관성을 이용하여 명사-명사 공기패턴과 명사-동사 공기패턴을 구축하여 문서요약에 이용한다. 크게 불용어 처리 단계, 공기패턴 구축 단계, 문장 중요도 계산 단계, 요약 생성단계의 네 단계로 나누어 요약을 생성한다. 30% 중요문장 추출된 신문기사를 대상으로 평가한 결과 명사-명사 공기패턴과 빈도만을 이용한 방법보다 명사-동사 공기패턴을 이용한 방법이 좋은 결과를 가져 왔다.

  • PDF

어휘 사전에 없는 단어를 포함한 문서의 요약문 생성 방법 (Summary Generation of a Document with Out-of-vocabulary Words)

  • 이태석;강승식
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.530-531
    • /
    • 2018
  • 문서 자동 요약은 주요 단어 또는 문장을 추출하거나 문장을 생성하는 방식으로 요약한다. 최근 연구에서는 대량의 문서를 딥러닝하여 요약문 자체를 생성하는 방식으로 발전하고 있다. 추출 요약이나 생성 요약 모두 핵심 단어를 인식하는 것이 매우 중요하다. 학습할 때 각 단어가 문장에서 출현한 패턴으로부터 의미를 인식하고 단어를 선별하여 요약한다. 결국 기계학습에서는 학습 문서에 출현한 어휘만으로 요약을 한다. 따라서 학습 문서에 출현하지 않았던 어휘가 포함된 새로운 문서의 요약에서 기존 모델이 잘 작동하기 어려운 문제가 있다. 본 논문에서는 학습단계에서 출현하지 않은 단어까지도 중요성을 인식하고 요약문을 생성할 수 있는 신경망 모델을 제안하였다.

  • PDF

시소러스와 술어 패턴을 이용한 의미역 부착 한국어 하위범주화 사전의 구축 (Constructing a Korean Subcategorization Dictionary with Semantic Roles using Thesaurus and Predicate Patterns)

  • 양승현;김영섬;우요섭;윤덕호
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제6권3호
    • /
    • pp.364-372
    • /
    • 2000
  • 하위범주화는 보어의 어휘 개념이 명시된 술어와 보어간 의존 관계를 정의하는 언어 정보로서 구문 및 의미 분석 등에 폭넓게 활용될 수 있는 기반 언어 자원이라는 데에 그 중요성이 있다. 본 논문에서는 표층문에서 통상 격표지로 표현되는 구문적 의존 관계뿐만 아니라, 보어가 갖는 의미역 정보가 부착되어 있으며 시소러스 개념 분류 체계와 연동 가능한 한국어 술어의 하위범주화 사전의 구축에 대해 설명하고 있다. 본 논문에서는 하위범주화 사전의 의미역 표현을 위해 총 25개의 의미역을 설정하고 있다. 이 의미역은 표층 격표지와 직접 연관되어 있기 때문에 통사적인 분석으로부터 직접 의미역 정보를 추출해서 의미 구조의 해석에 이용하는 것이 가능하다. 또한 명사 보어가 갖는 개념의 표현을 위해 상ㆍ하위어 관계를 갖는 12만 어휘 규모의 시소러스를 이용하고 있으며, 술어의 의존 관계 표현을 위해 동사, 형용사에 대해 각각 47, 17 개의 하위범주화 패턴을 이용하고 있다. 실용적 규모의 시소러스를 이용함으로써 문장에 나타난 명사의 시소러스 개념을 그대로 하위범주화 사전에 적용시켜 의미 정합 여부를 판단할 수 있는 실질적인 선택제약 체계를 구성할 수 있었고, 표층 격표지에 기초한 표준화된 술어 패턴을 이용함으로써 의미역의 결정 등에서 야기될 수 있는 비일관성을 방지하고 구축에 드는 비용을 절감할 수 있었다. 이상과 같은 방법으로 말뭉치에서 추출한 고빈도 술어 13,000 여개에 대해 하위범주화 사전을 구축하였으며, 적용 범위 평가 실험에 의하면 이 하위범주화 사전은 말뭉치에서 발견된 술어의 72.7%에 대해 하위범주화 정보를 제공할 수 있음을 확인하였다.

  • PDF

기계 번역 의미 대역 패턴을 이용한 한국어 복합 명사 의미 결정 방법 (A Method of Word Sense Disambiguation for Korean Complex Noun Phrase Using Verb-Phrase Pattern and Predicative Noun)

  • 양성일;김영길;박상규;나동렬
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2003년도 제15회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.246-251
    • /
    • 2003
  • 한국어의 언어적 특성에 의해 빈번하게 등장하는 명사와 기능어의 나열은 기능어나 연결 구문의 잦은 생략현상에 의해 복합 명사의 출현을 발생시킨다. 따라서, 한국어 분석에서 복합 명사의 처리 방법은 매우 중요한 문제로 인식되었으며 활발한 연구가 진행되어 왔다. 복합 명사의 의미 결정은 복합 명사구 내 단위 명사간의 의미적인 수식 관계를 고려하여 머리어의 선택과 의미를 함께 결정할 필요가 있다. 본 논문에서는 정보 검색의 색인어 추출 방법에서 사용되는 복합 명사구 내의 서술성 명사 처리를 이용하여 복합 명사의 의미 결정을 인접 명사의 의미 공기 정보가 아닌 구문관계에 따른 의미 공기 정보를 사용하여 분석하는 방법을 제시한다. 복합 명사구 내에서 구문적인 관계는 명사구 내에 서술성 명사가 등장하는 경우 보-술 관계에 의한 격 결정 문제로 전환할 수 있다. 이러한 구문 구조는 명사 의미를 결정할 수 있는 추가적인 정보로 활용할 수 있으며, 이때 구문 구조 파악을 위해 구축된 의미 제약 조건을 활용하도록 한다. 구조 분석에서 사용되는 격틀 정보는 동사와 공기하는 명사의 구문 관계를 분석하기 위해 의미 정보를 제약조건으로 하여 구축된다. 이러한 의미 격틀 정보는 단문 내 명사들의 격 결정과 격을 채우는 명사 의미를 결정할 수 있는 정보로 활용된다. 본 논문에서는 현재 개발중인 한영 기계 번역 시스템 Tellus-KE의 단문 단위 대역어 선정을 위해 구축된 의미 대역패턴인 동사구 패턴을 사용한다. 동사구 패턴에 기술된 한국어의 단문 단위 의미 격 정보를 사용하는 경우, 격결정을 위해 사용되는 의미 제약 조건이 복합 명사의 중심어 선택과 의미 결정에 재활용 될 수 있으며, 병렬말뭉치에 의해 반자동으로 구축되는 의미 대역 패턴을 사용하여 데이터 구축의 어려움을 개선하고자 한다. 및 산출 과정에 즉각적으로 활용될 수 있을 것이다. 또한, 이러한 정보들은 현재 구축중인 세종 전자사전에도 직접 반영되고 있다.teness)은 언화행위가 성공적이라는 것이다.[J. Searle] (7) 수로 쓰인 것(상수)(象數)과 시로 쓰인 것(의리)(義理)이 하나인 것은 그 나타난 것과 나타나지 않은 것들 사이에 어떠한 들도 없음을 말한다. [(성중영)(成中英)] (8) 공통의 규범의 공통성 속에 규범적인 측면이 벌써 있다. 공통성에서 개인적이 아닌 공적인 규범으로의 전이는 규범, 가치, 규칙, 과정, 제도로의 전이라고 본다. [C. Morrison] (9) 우리의 언어사용에 신비적인 요소를 부인할 수가 없다. 넓은 의미의 발화의미(utterance meaning) 속에 신비적인 요소나 애정표시도 수용된다. 의미분석은 지금 한글을 연구하고, 그 결과에 의존하여서 우리의 실제의 생활에 사용하는 $\ulcorner$한국어사전$\lrcorner$ 등을 만드는 과정에서, 어떤 의미에서 실험되었다고 말할 수가 있는 언어과학의 연구의 결과에 의존하여서 수행되는 철학적인 작업이다. 여기에서는 하나의 철학적인 연구의 시작으로 받아들여지는 이 의미분석의 문제를 반성하여 본다.반인과 다르다는 것이 밝혀졌다. 이 결과가 옳다면 한국의 심성 어휘집은 어절 문맥에 따라서 어간이나 어근 또는 활용형 그 자체로 이루어져 있을 것이다.으며, 레드 클로버 + 혼파 초지가 건물수량과 사료가치를 높이는데 효과적이었다.\ell}$ 이었으며 , yeast extract 첨가(添加)하여 배양시(培養時)는 yeast extract 농도(濃度)가 증가(增加)함에 따라 단백질(蛋白質) 함량(含量)도 증가(增加)하였다. 7. CHS-13 균주(菌株)의 RNA 함량(

  • PDF

어미변화를 고려한 감성 구문 패턴을 이용한 상품평 의견 분류 (Opinion Mining of Product Reviews using Sentiment Phrase Patterns considered the Endings of Declinable Words)

  • 김정호;차명훈;김명규;채수환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2010년도 한국컴퓨터종합학술대회논문집 Vol.37 No.1(C)
    • /
    • pp.285-290
    • /
    • 2010
  • 인터넷이 대중화됨에 따라 누구나 쉽게 자신의 의견을 온라인상에 표현할 수 있게 되었다. 그 결과 생각이나 느낌을 나타내는 의견 데이터들의 양이 급속도로 방대해졌으며, 이러한 데이터들을 이용한 여러 응용 사례들의 등장으로, 효율적인 검색 및 자동 분류 기술이 요구되고 있다. 이런 기술적 흐름에 맞추어 의견 데이터 분류에 관한 여러 연구들이 이루어져 왔다. 이러한 의견 분류에 대한 연구들을 살펴보면, 분류를 위해 자질(Feature)로서 사용한 단일어(Single word)가 아닌 2개 이상의 N-gram 단어, 어휘 구문 패턴 및 통사 구문 패턴 등을 사용한다. 특히, 패턴은 단일어나 N-gram 단어에 비해 유연하고, 언어학적으로 풍부한 정보를 표현할 수 있기 때문에 이를 주요 연구 주제로 사용되었다. 그럼에도 불구하고, 이러한 연구들은 주로 영어에 대한 연구들이었으며, 한국어에 패턴을 적용하여 주관성을 갖는 문장을 분류하거나, 극성을 분류하는 연구들은 아직 미비하다. 한국어의 특색으로 한국어는 용언의 활용이 발달되어 있어, 어미의 변화가 다양하며, 그 변화에 따라 의미가 미묘하게 변화한다. 그러나 기존 한국어에 대한 의견 분류 연구들은 단어의 핵심 의미만을 파악하기 위해 어미 부분을 제거하고 어간만을 취해서 처리하여 어미에 대한 의미변화를 고려하지 못하므로 분류 정확도가 영어권에 연구 결과에 비해 떨어진다. 그래서 본 연구는 영어에 적용된 패턴을 이용한 기존 방법들을 정리하고, 그 방법들 중에서 극성을 지닌 문장성분 패턴을 한국어에 적용하였다. 그리고 어미의 변화에 대한 패턴을 추출하여 이 변화가 의견 분류의 성능에 미치는 영향을 분석하였다.

  • PDF

음소 유사율 오류 보정을 이용한 어휘 인식 후처리 시스템 (Vocabulary Recognition Post-Processing System using Phoneme Similarity Error Correction)

  • 안찬식;오상엽
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권7호
    • /
    • pp.83-90
    • /
    • 2010
  • 어휘 인식 시스템에서 인식률 저하의 요인으로는 유사한 음소 인식과 부정확한 어휘 제공으로 인해 오인식 오류가 존재한다. 부정확한 어휘의 입력으로 특징을 추출하여 인식할 경우 오인식의 결과가 나타나거나 유사한 음소로 인식되며 특징 추출이 제대로 이루어지지 않으면 음소 인식 시 유사한 음소로 인식하게 된다. 따라서 본 논문에서는 음소가 갖는 특징을 기반으로 음소 유사율을 이용한 어휘 인식 후처리에서의 오류 보정 후처리 시스템을 제안하였다. 음소 유사율은 모노폰으로 훈련시킨 훈련 데이터를 각각의 음소에 MFCC와 LPC 특징 추출 방법을 이용하여 구하였다. 유사한 음소는 정확한 음소로 인식할 수 있도록 유도하여 부정확한 어휘 제공으로 인하여 오인식되는 오류를 최소화하였다. 음소 유사율과 신뢰도를 이용하여 오류 보정율을 구하였으며, 어휘 인식 과정에서 오류로 판명된 어휘에 대하여 오류 보정을 수행하였다. 에러패턴 학습을 이용한 시스템과 의미기반을 이용한 시스템에 비해 시스템 성능 평가 결과 MFCC와 LPC는 각각 7.5%와 5.3%의 인식 향상률을 보였다.

QA 시스템에서 질의 패턴을 이용한 질의 확장 기법 (A Query Expansion Technique using Query Patterns in QA systems)

  • 김혜정;부기동
    • 한국산업정보학회논문지
    • /
    • 제12권1호
    • /
    • pp.1-8
    • /
    • 2007
  • QA(질의응답) 시스템은 질의에서 요구하는 정답 유형 및 질의에 사용된 용어를 적용하여 보다 정확한 답을 추출하고자 한다. 그러나 질의에 사용된 용어들이 문서에 그대로 사용되지 않고 같은 의미의 다른 어휘로 출현하기도 하며, 혹은 다른 문법적 정보를 가진 카테고리로 등장하여 정답 추출에 어려움이 따른다. 따라서 본 논문은 질의에서 사용된 의미적으로 더 가까운 단어들로 구성되는 심층적 질의 카테고리의 질의 패턴을 이용한 질의 확장 방법론을 제안한다. 제안한 방법은 질의 유형에 따른 개념 리스트를 우선 구축하고, 학습 알고리즘에 의해 각 질의 카테고리에 대한 개념 리스트를 구축한다. 실험의 결과로서 제안한 방법의 성능이 향상되었음을 입증하였다.

  • PDF