Semantic role labeling is the research area analyzing the semantic relationship between elements in a sentence and it is considered as one of the most important semantic analysis research areas in natural language processing, such as word sense disambiguation. However, due to the lack of the relative linguistic resources, Korean semantic role labeling research has not been sufficiently developed. We, in this paper, propose an automatic predicate-argument analyzer to begin constructing the Korean PropBank which has been widely utilized in the semantic role labeling. The analyzer has mainly two components: the semantic lexical dictionary and the automatic predicate-argument extractor. The dictionary has the case frame information of verbs and the extractor is a module to decide the semantic class of the argument for a specific predicate existing in the syntactically annotated corpus. The analyzer developed in this research will help the construction of Korean PropBank and will finally play a big role in Korean semantic role labeling.
The lexical semantic system should be built to grasp lexical semantic information more clearly. In this paper, we studied a semantic clustering of predicates that is one of the steps in building the lexical semantic system. Unlike previous studies that used argument of subcategorization(subject and object), selectional restrictions and interaction information of adverb, we used sense tagged definition in dictionary for the semantic clustering of predicate, and also attempted hierarchical clustering of predicate using the relationship between the generic concept and the specific concept. Most of the predicates in the dictionary were used for clustering. Total of 106,501 predicates(85,754 verbs, 20,747 adjectives) were used for the test. We got results of clustering which is 2,748 clusters of predicate and 130 recursive definition clusters and 261 sub-clusters. The maximum depth of cluster was 16 depth. We compared results of clustering with the Sejong semantic classes for evaluation. The results showed 70.14% of the cohesion.
Annual Conference on Human and Language Technology
/
1998.10c
/
pp.304-315
/
1998
정보 검색 시스템에서 가장 문제가 되는 어휘 클라스는 소위 '고유 명사'와 '합성 명사'로 분류되는 명사 유형이다. 이들 클라스는, 기존 대사전 및 전자 사전 (MRD)류에서, 그 어휘 목록을 체계적으로 제공하지 못하는 가장 대표적인 부류들인데, 실제 검색 시스템에서는 많은 경우 정보의 핵심어 (Key Word)가 된다. 본 연구에서는 신문, 잡지등 시사 문서류에서 가장 빈번히 발견되는 명사 유형의 하나인, '인명 관련 고유 명사' 유형에 대한 문제에 그 논의의 촛점을 두고, 이들 명사들의 체계적인 처리를 위해서 어떠한 형태로 사전을 구성해야 하는지를 검토할 것이다. '고유 명사'라는 개념 자체가 지니고 있는 외연적 정의상의 문제점을 극복하기 위해서 우리는 '백과 명사 (Encyclopedic Noun)'라는 용어를 사용하기로 하며, 이는 좁은 의미의 고유 명사 및, 전문어, 고유 명사 관련 파생-복합어류 등을 포함하는, 보다 확장된 개념으로 이해되어야 한다. <인명> 관련 백과 명사류의 하위 유형 분류 및 그 특징적 결합어 형태(Appropriate Particle)에 대한 연구 결과들이 소개된다.
Annual Conference on Human and Language Technology
/
1994.11a
/
pp.305-312
/
1994
품사 태깅은 코퍼스에 정확한 품사 정보를 첨가하는 작업이다. 많은 단어는 하나 이상의 품사를 갖는 중의성이 있으며, 품사 태깅은 지역적 문맥을 이용하여 품사 중의성을 해결한다. 한국어에서 품사 중의성은 다양한 원인에 의해서 발생한다. 일반적으로 동형 이품사 형태소에 의해 발생되는 품사 중의성은 문맥 확률과 어휘 확률에 의해 해결될 수 있지만, 이형 동품사 형태소에 의해 발생되는 품사 중의성은 상호 정보나 의미 정보가 있어야만 해결될 수 있다. 그리나, 기존의 한국어 품사 태깅 방법은 문맥 확률과 어휘 확률만을 이용하여 모든 품사 중의성을 해결하려 하였다. 본 논문은 어절 태깅 단계에서는 중의성을 최소화하고, 형태소 태깅 단계에서는 최소화된 중의성 중에서 하나를 결정하는 두단계 태깅 방법을 제시한다. 제안된 어절 태깅 방법은 단순화된 어절 태그를 이용하므로 품사 집합에 독립적이면, 대량의 어절을 소량의 의사 부류에 사상하므로 통계 정보의 양이 적다. 또한, 은닉 마르코프 모델을 이용하므로 태깅되지 않은 원시 코퍼스로부터 학습이 가능하며, 적은 수의 파라메터와 Viterbi 알고리즘을 이용하므로 태깅 속도가 효율적이다.
문서 자동 요약은 입력된 문서에 대해 컴퓨터가 자동으로 요약을 생성하는 과정을 의미한다. 즉, 컴퓨터가 문서의 기본적인 내용을 유지하면서 문서의 복잡도 즉 문서의 길이를 줄이는 작업이다. 효율적인 정보 접근을 제공함과 동시에 정보 과적재를 해결하기 위한 하나의 방법으로 문서 자동요약에 관한 연구가 활발히 진행되고 있다. 본 논문의 목적은 어휘 연관성 정보를 이용하여 한국어 문서를 자동으로 요약하는 효율적이며 효과적인 모형을 개발하는 것이다. 제안한 방법에서는 신문기사와 같은 특정 부류에 국한되는 단어간의 어휘연관성을 이용하여 명사-명사 공기패턴과 명사-동사 공기패턴을 구축하여 문서요약에 이용한다. 크게 불용어 처리 단계, 공기패턴 구축 단계, 문장 중요도 계산 단계, 요약 생성단계의 네 단계로 나누어 요약을 생성한다. 30% 중요문장 추출된 신문기사를 대상으로 평가한 결과 명사-명사 공기패턴과 빈도만을 이용한 방법보다 명사-동사 공기패턴을 이용한 방법이 좋은 결과를 가져 왔다.
Annual Conference on Human and Language Technology
/
2000.10d
/
pp.395-401
/
2000
국어에서는 어떠한 대상 의 수량을 표현할 때 수사와 함께 분류사(classifier)를 사용한다. 따라서 분류사는 그 특성상 수량 표현 구문을 형성하는 대상 명사와 의미적으로 밀접한 관련을 지니게 되는데, 단순히 명사를 셈하는 것 뿐 아니라 명사의 의미적 특성을 명세(specify)해 준다고 할 수 있다. 본 연구에서는 이러한 명사와 분류사의 연관성에 초점을 맞추어 분류사의 사용에 따른 명사의 범주화 및 계층 구조를 보이고, 컴퓨터 말뭉치 자료를 이용하여 그 관계를 좀더 명확히 밝히는 것을 목적으로 한다. 이러한 연구는 언어를 전산적으로 처리하는데 필수적인 전산어휘부(computational lexicon)의 구축에 필요한 기초 작업이 될 수 있다.
Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.934-936
/
2004
본문에서는 최근 들어 각광을 받고 있는 패턴인식 방법론인 Support Vector Machine을 이용하여 중국어 개체명을 식별하는 방법을 제안하고자 한다. SVM(support vector machine)은 입력 자질이 많을 경우에도 안정적인 성능을 나타내고 보편적으로 적용할 수 있는 모델을 개발할 수 있는 장점이 있다. 실험에서 어휘. 품사, 의미부류 등 많은 수의 자질을 이용하였다. 실험결과는 본문에서 제안한 방법이 튜닝을 거치지 않아도 좋은 성능을 나타낼 수 있고, 수행 속도도 만족스럽다는 것을 보여주었다.
The purpose of this paper is to build a semantic networks of the 'cooking class' verb (based on 'CoreNet' of KAIST). This proceedings needs to adjust the concept classification. Then sub-categories of [Cooking] and [Foodstuff] hierarchy of CoreNet was adjusted for the construction of verb semantic networks. For the building a semantic networks, each meaning of 'Cooking verbs' of Korean has to be analyzed. This paper focused on the Korean 'heating' verbs and 'non-heating'verbs. Case frame structure and argument information were inserted for the describing verb information. This paper use a Propege 3.3 as a tool for building "cooking verb" semantic networks. Each verb and noun was inserted into it's class, and connected by property relation marker 'HasThemeAs', 'IsMaterialOf'.
This study proposes a bottom-up and inductive manual mapping methodology for integrating two heterogenous fine-grained ontologies which were built by a top-down and deductive methodology, namely the Sejong semantic classes (SJSC) and the upper nodes in KorLexNoun 1.5 (KLN), for HLP applications. It also discusses various problematics in the mapping processes of two language resources caused by their heterogeneity and proposes the solutions. The mapping methodology of heterogeneous fine-grained ontologies uses terminal nodes of SJSC and Least Upper Bounds (LUB) of KLN as basic mapping units. Mapping procedures are as follows: first, the mapping candidate groups are decided by the lexfollocorrelation between the synsets of KLN and the noun senses of Sejong Noun Dfotionaeci(SJND) which are classified according to SJSC. Secondly, the meanings of the candidate groups are precisely disambiguated by linguistic information provided by the two ontologies, i.e. the hierarchicllostructures, the definitions, and the exae les. Thirdly, the level of LUB is determined by applying the appropriate predicates and definitions of SJSC to the upper-lower and sister nodes of the candidate LUB. Fourthly, the mapping possibility ic inthe terminal node of SJSC is judged by che aring hierarchicllorelations of the two ontologies. Finally, the ituorrect synsets of KLN and terminologiollocandidate groups are excluded in the mapping. This study positively uses various language information described in each ontology for establishing the mapping criteria, and it is indeed the advantage of the fine-grained manual mapping. The result using the proposed methodology shows that 6,487 LUBs are mapped with 474 terminal and non-terminal nodes of SJSC, excluding the multiple mapped nodes, and that 88,255 nodes of KLN are mapped including all lower-level nodes of the mapped LUBs. The total mapping coverage is 97.91% of KLN synsets. This result can be applied in many elaborate syntactic and semantic analyses for Korean language processing.
Koreanishche Zeitschrift fur Deutsche Sprachwissenschaft
/
v.4
/
pp.1-27
/
2001
이 글의 목적은 독일어 신체어휘 관련 관용구들 가운데 ${\lceil}$Duden Band 11${\rfloor}$에 수록된 108개의 $\lceil$손$\rfloor$ 관련 관용구를 대상으로 이들의 형태$\cdot$통사구조를 파악하고, 그들을 모형화하는 것이다. 우리는 연구 대상을 문장에서 결합가 보유어로서 술어의 기능을 하는 관용구에 한정했다. 우리는 $\lceil$손$\rfloor$ 관련 관용구를 보충어의 수와 형태에 따라 크게 세 가지 부류, 즉 1가, 2가, 3가의 관용구로 구분하였다 보충어의 형태는 명사구(Sn, Sd, Sa)와 전치사구(pS)에 한정했으며 문장형태의 보충어, 예를 들어 부문장(NS)과 부정사문(Inf) 형태는 고려하지 않았다. 이들이 보충어로 간주될 수 있는지의 여부는 아직 더 많은 연구를 필요로 하기 때문에 다음 과제로 남겨두었다. 일차적으로 외적 결합가($\"{a}u{\beta}ere\;Valenz)$에 따라, 이차적으로는 내적 결합가(innere Valenz)에 따라 108개의 $\lceil$손$\rfloor$ 관련 관용구를 분석한 결과 우리는 다음과 같은 형태$\cdot$통사적 문형을 얻을 수 있었다. $\cdot$ 1가 동사 관용구: 1) PL-Sn : (1) PL[VPL - Sa] - Sn (2) PL(VPL - pS) - Sn (3) PL[VPL - Sa - pS] - Sn (4) PL[VPL - pS - pS] - Sn Sondergruppen: PL[VPL - Sa - Inf] - Sn PL[VPL - pS - Inf] - Sn 2) PL - Sd: (1) PL[VPL - Sn] - Sd (2) PL[VPL - Sn(es) - pS] - Sd $\cdot$ 2가 동사 관용구1) PL - Sn - Sd: (1) PL[VPL - Sa] - Sn - Sd (2) PL[VPL - pS] - Sn - Sd (3) PL[VPL - Sa - pS) - Sn - Sd 2) PL - Sn - pS: (1) PL[VPL - Sa] - Sn - pS (2) PL[VPL - pS] - Sn - pS (3) PL(VPL - Sa - pS) - Sn - pS 3) PL[VPL - pS) - Sn -Sa $\cdot$ 3가 동사 관용구: (1) PL[VPL - pS] - Sn - Sd - Sa (2) PL[VPL - pS] - Sn - Sa - pS (3) PL[VPL - Sa] - Sn - Sd - pS 이러한 분류가 보여주듯이, 독일어에는 1가, 2가, 3가의 관용구가 있으며, 구조 외적으로 동일한 통사적 결합가를 갖는다 하더라도 구조 내적 성분구조가 다르다는 것을 알 수 있다. 우리는 이 글이 외국어로서의 독일어를 배우는 이들에게 독일어의 관용구를 보다 올바르게 이해할 수 있는 방법론적인 토대를 제공함은 물론, (관용어) 사전에서 외국인 학습자를 고려하여 관용구를 알기 쉽게 기술하는 데 도움을 줄 수 있기를 바란다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.