본 논문에서는 우리말 문서에 있는 오류를 어절 단위로 검증하는 철자 오류와 여러 어절을 분석해야 처리할 수 있는 문법 오류로 분류하였다. 문법 오류를 처리할 때 전체 문장 분석은 시간이 많이 소요되고 구현하기 어려우므로 대부분 부분 문장 분석 방법을 이용한다. 기존 연구에서 사용한 부분 문장 분석은 분석 어절에 어휘 중의성이 있을 때 문장 분석 종결 또는 과분석 등의 오류가 발생한다. 본 논문에서는 문법 검사기에서 어휘 중의성 때문에 발생하는 문제점을 해결하는 방법으로 어휘 중의성 제거 규칙을 사용한다. 본 논문에서 구현한 어휘 중의성 제거 모듈은 코퍼스 데이타에서 얻은 경험적 규칙을 기반으로 한다. 이 경험적 규칙은 언어적 지식을 기반으로 한다.
한국정보과학회언어공학연구회 1999년도 제11회 한글 및 한국어 정보처리 학술대회 및 제1회 형태소 분석기 및 품사태거 평가 워크숍
/
pp.117-122
/
1999
본 연구는 형태소 분석에 필요한 언어 지식과 품사 태깅에 필요한 확률 정보를 별도의 언어 지식 추가 없이 학습 말뭉치를 통해서 얻어내는 방법을 제안한다. 먼저 품사 부착된 학습 말뭉치로부터 형태소 사전과 결합 정보를 추출한다. 그리고 자주 발생하는 어절 및 해석상 모호성이 많은 어절에 대해서는 학습 말뭉치에서 발견된 형태소 분석 결과를 저장하여 형태소 분석에 소요되는 시간과 형태소 분석의 정확률을 높인다. 또한 미등록어의 많은 부분을 차지하는 인명, 지명, 조직명에 대해서는 정보 추출 분야에서 사용하는 고유 명사 분류법으로 해결한다. 품사 태깅을 위해서는 품사열 정보와 품사열 정보로는 해결할 수 없는 경우를 위한 어휘 정보를 학습 말뭉치에서 추출한다. 품사열 정보와 어휘 정보는 정형화 과정을 거쳐 최대 엔트로피 모델의 자질로 사용되어 품사 태깅 시스템을 위한 확률 분포를 구성한다. 본 연구에서 제안하는 방법은 학습 말뭉치를 기반으로 한다는 특성에 의해 다양한 영역에 사용하기 쉽다. 또한 어휘 정보로 품사 문맥 정보를 보완하기 때문에 품사 분류 체계와 형태소 해석 규칙에 영향을 적게 받는다는 장점을 가진다. MATEC '99 데이터 실험 결과 형태소 단위로 94%의 재현률과 93%의 정확률을 얻을 수 있었다.
본 논문에서는 레빈쉬타인 거리(Levenshtein distance)를 이용한 감성 분류 방법을 제안한다. 감성 자질에 레빈쉬타인 거리를 적용하여 BOW(Back-Of-Word)를 생성하고 이를 학습 자질로 사용한다. 학습 모델은 지지벡터기계(support vector machines, SVMs)와 나이브 베이즈(Naive Bayes)를 이용하였다. 실험 데이터로는 다음 영화 사이트로부터 영화평을 수집하였으며, 수집한 영화평은 총 2,385건이다. 수집된 영화평으로부터 감성 어휘를 수작업을 통해 수집하였으며 총 778개 어휘가 선별되었다. 실험에서는 감성 어휘에 레빈쉬타인 거리를 적용한 BOW를 이용하여 기계학습을 수행하였으며, 10-fold-cross validation 방식으로 분류기의 성능을 평가하였다. 평가 결과는 레빈쉬타인 거리가 3일 때 다항 나이브 베이즈(Muitinomial Naive Bayes) 분류기에서 85.46%의 가장 높은 정확도를 보였다. 실험을 통하여 본 논문에서 제안하는 방법이 문서 내의 철자 오류에 대해서도 분류 성능에 영향을 적게 받음을 알 수 있었다.
어휘에 대한 이해는 효과적인 수학 학습을 위한 필수적인 요소이다. 이에 수학을 학습할 때 자주 사용되는 어휘를 수학교육용 어휘로 선정하고자 2009 개정 1~2학년 수학 교과서와 2015 개정 1~2학년 수학 교과서에서 공통적으로 사용된 고빈도 어휘를 추출하고 어휘 난이도와 유형에 따라 분류하였다. 이때 학교 현장에서 효과적으로 사용하기 위하여 학년 공통 어휘와 학기별 집중 어휘로 구분하여 제시하였다. 분석 결과, 1학년 공통 어휘는 수, 몇, 알아보다, 읽다, 모양, 쓰다, 만들다, 말하다, 나타내다, 덧셈, 뺄셈 등이 있으며, 2학년 공통 어휘는 수, 알아보다, 몇, 모형, 나타내다, 길이, 방법, 만들다, 모양, 모두 등이 있다. 2009 개정 수학 교과서와 2015 개정 수학 교과서의 고빈도 어휘는 유사한 경향을 보였으며, 이를 통해 수학교육용 어휘 선정에 실효성을 엿볼 수 있었다. 선정된 어휘는 1~5등급까지 난이도가 다양하였으며, 어휘 유형 중 사고도구어의 비중은 점차 증가하였으나 수학 전문어의 비중은 2학년 1학기 때 가장 높은 것으로 나타났다. 어휘에 대한 이해는 수학 학습에 많은 영향을 미치나 지금까지 수학교육용 어휘 목록은 제시된 바가 없다. 이 연구에서 제시된 수학교육용 어휘를 바탕으로 수학교육을 위한 다양한 어휘 자료가 개발 될 수 있을 것이다.
현재의 질의응답 시스템은 TREC(Text Retrieval Conference) 질의집합에 대해 최대 80% 정도의 응답 성공률을 보이고 있다. 하지만 질의 유형에 다라 성능의 많은 차이가 있으며, 인과관계에 대한 질의에 대해서는 매우 낮은 응답 성공률을 보이고 있다. 본 연구는 인접한 두 문장 혹은 두 문장 혹은 두 명사구 사이에 존재하는 인과관계를 추출하고자 한다. 기존의 명사구 간 인과관계 추출 연구에서는 인과관계 단서구문과 두 명사구의 의미를 주요한 정보로 사용하였으나, 사전 미등록어가 사용되었을 때 올바른 선택을 하기 어려웠다. 또한, 학습 코퍼스에 대한 인과관계 부착과정이 선행되어야 하며, 다량의 학습자료를 사용하기가 어려웠다. 본 연구에서는 인과관계 명사구 쌍에서 추출된 어휘 쌍을 기존의 단서구문과 같이 사용하는 방법을 제안한다. 인과관계 분류를 위해 나이브 베이즈 분류기를 사용하였으며, 비지도식 학습과정을 사용하였다. 제안된 분류 모델은 기존의 분류 모델과 달리 사전 미등록어에 의한 성능 저하가 없으며, 학습 코퍼스의 인과관계 분류 작업이 선행될 필요 없다. 문장 내 명사구간의 인과관계 추출 실험 결과 79.07%의 정확도를 얻었다. 이러한 결과는 단서구문과 명사구 의미를 이용한 방법에 비해 6.32% 향상된 결과이며, 지도식 학습방식을 통해 얻은 방법과 유사한 결과이다. 또한 제안된 학습 및 분류 모델은 문장간의 인과관계 추출에도 적용가능하며, 한국어에서 인접한 두 문장간의 인과관계 추출 실험에서 74.68%의 정확도를 보였다.
질의응답 시스템에서의 질의 분석 과정은 이용자의 자연어 질의 문장에서 질의 의도를 파악하여 그 유형을 분류하고 정답 추출을 위한 정보를 구하는 것이다. 본 연구에서는 복잡한 분류 규칙 집합이나 대용량의 언어 지식 자원 대신 이용자 질의 문장에서 질의 초점 어휘를 추출하고 구문 구조적으로 관련된 단어들의 의미 정보에 기반하여 효율적으로 질의 유형을 분류하는 방법을 제안한다. 질의 초점 어휘가 생략된 경우의 처리와 동의어와 접미사 정보를 이용하여 질의 유형 분류 성능을 향상시킬 수 있는 방법도 제안한다.
대화 시스템에서 사용자 발화에 대한 감정 분석은 적절한 시스템 응답과 서비스를 제공하는데 있어 매우 중요한 정보이다. 본 연구에서는 단순한 긍, 부정이 아닌 분노, 슬픔, 공포, 기쁨 등 Plutchick의 8 분류 체계에 해당하는 상세한 감정을 분석 하는 데 있어, 임베딩 모델을 사용하여 기존의 어휘 자질을 효과적으로 사용할 수 있는 새로운 방법을 제안한다. 또한 대화 속에서 발생한 감정의 지속성을 반영하기 위하여 문장 임베딩 벡터와 문맥 임베딩 벡터를 자질로서 이용하는 방법에 대해 제안한다. 실험 결과 제안하는 임베딩 자질은 특히 내용어에 대해 기존의 어휘 자질을 대체할 수 있으며, 데이터 부족 문제를 다소 해소하여 성능 향상에 도움이 되는 것으로 나타났다.
인터넷을 이용한 사람들의 사회 참여가 확대되면서 다양한 의견(Opinion)들이 급속도로 증가하고 있으며 이러한 의견을 분석하여 유용한 정보로 활용하기 위한 연구가 활발히 진행되고 있다. 그 중에서도 상품리뷰는 기업에서 연구, 개발, 마케팅의 주요 자료로 사용되고 있으며 사용자가 상품의 구매를 결정하는 중요한 요인 중 하나로 작용하고 있다. 본 논문에서는 한국어로 이루어진 상품 리뷰를 분석하여 의견 자질(Feature)을 추출하고 분류(Classification)하는 시스템을 설계하고 구현하였다. 한글 의견 자질 추출을 위하여 먼저 한글 상품 리뷰를 분석하여 의견 사전을 구축하였다. 의견 사전으로는 의견 자질과 의견 어휘, 독립의견어휘, 의견 숙어, 부정어 등의 각기 다른 세부 사전을 구축하여 리뷰 분석 시 단계적으로 적용하여 정확도를 높일 수 있도록 설계하였다. 이렇게 구현된 시스템을 평가하기 위하여 각기 다른 3개의 도메인에서 실제 한국어 리뷰를 수집하여 실험을 수행하였으며 자질 추출에서는 평균 78.86% 정확률, 61.41% 재현율을, 극성 분류에서는 평균 69.46% 정확률, 42.26% 재현율을 나타냈다.
한국어 문서에는 여러 어절을 검증해야만 처리할 수 있는 의미 오류와 문체 오류가 있다. 다수 어절 사이에 있는 오류는 부분 문장 분석을 한다. 논문에서는 의미 오류와 문체 오류를 처리할 때 어휘적 중의성 때문에 생기는 문제점을 제시하고 해결방법을 제안한다. 어휘적 중의성이란 한 단어가 두 가지 이상의 형태소 정보를 가짐을 뜻한다. 철자검사기와는 달리 문법 검사기에서는 어휘적 중의성을 제거하지 않으면 여러 가지 검사 오류가 발생한다. 이 논문에서는 의미, 문체 시스템에서 어휘적 중의성 때문에 검사 오류가 발생할 수 있는 과정을 크게 세 단계로 분류하였다. 연어 오류가 발생할 수 있는 검사단어가 어휘적 중의성을 가지면 표제어가 다른 규칙이 여러 개 존재한다. 이 때 규칙 선택 문제가 생긴다. 중의성 문제는 부분 문장분석 과정에서도 지배소와 의존소 사이의 의존관계를 정확하게 설정하기 어렵게 한다. 본 논문에서는 각 단계에서 발생한 문제를 최소화하여 문법 검사기의 성능을 향상시킨다.
이 논문은 가장 잘 알려진 어휘부중 하나인 워드넷의 활용 범위 확장을 위해 워드넷 신셋에 "사건구조 프레임(Event Structure Frame)"을 주석하는 연구에 관한 것이다. 워드넷을 비롯하여 현재 사용되고 있는 어휘부는 풍부한 어휘의미정보가 구조화되어 있지만, 사건구조에 관한 정보를 포함하고 있지는 않다. 이 연구의 가장 큰 기여는 워드넷에 사건구조 프레임을 추가함으로써 워드넷과의 연결만으로 핵심적인 어휘의미정보를 모두 추출할 수 있도록 해준다는 점이다. 예를 들어 텍스트 추론, 자연어처리, 멀티 모달 태스크 등은 어휘의미정보와 배경지식(상식)을 이용하여 태스크를 수행한다. 워드넷에 대한 사건구조 주석은 자동사건구조 주석 시스템인 GESL을 이용하여 워드넷 신셋에 있는 예문에 먼저 자동 주석을 하고, 오류에 대해 수동 수정을 하는 반자동 방식이다. 사전 정의된 23개의 사건구조 프레임에 따라 예문에 출현하는 타겟 동사를 분류하고, 해당 프레임과 매핑한다. 현재 이 연구는 시작 단계이며, 이 논문에서는 빈도 순위가 가장 높은 100개의 동사와 각 사건구조 프레임별 대표 동사를 포함하여 총 106개의 동사 레마에 대해 실험을 진행하였다. 그 동사들에 대한 전체 워드넷 신셋의 수는 1337개이다. 예문이 없어서 GESL이 적용될 수 없는 신셋을 제외하면 1112개 신셋이다. 이 신셋들에 대해 GESL을 적용한 결과 F-Measure는 73.5%이다. 향후 연구에서는 워드넷-사건구조 링크를 계속 업데이트하면서 딥러닝을 이용해 GESL 성능을 향상 할 수 있는 방법을 모색할 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.