• 제목/요약/키워드: 어휘분류

검색결과 309건 처리시간 0.022초

어휘적 중의성 제거 규칙과 부분 문장 분석을 이용한 한국어 문법 검사기 (A Korean Grammar Checker using Lexical Disambiguation Rule and Partial Parsing)

  • 소길자;권혁철
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제28권3호
    • /
    • pp.305-315
    • /
    • 2001
  • 본 논문에서는 우리말 문서에 있는 오류를 어절 단위로 검증하는 철자 오류와 여러 어절을 분석해야 처리할 수 있는 문법 오류로 분류하였다. 문법 오류를 처리할 때 전체 문장 분석은 시간이 많이 소요되고 구현하기 어려우므로 대부분 부분 문장 분석 방법을 이용한다. 기존 연구에서 사용한 부분 문장 분석은 분석 어절에 어휘 중의성이 있을 때 문장 분석 종결 또는 과분석 등의 오류가 발생한다. 본 논문에서는 문법 검사기에서 어휘 중의성 때문에 발생하는 문제점을 해결하는 방법으로 어휘 중의성 제거 규칙을 사용한다. 본 논문에서 구현한 어휘 중의성 제거 모듈은 코퍼스 데이타에서 얻은 경험적 규칙을 기반으로 한다. 이 경험적 규칙은 언어적 지식을 기반으로 한다.

  • PDF

어휘 정보의 자동 추출과 이를 이용한 한국어 품사 태깅 (Korean Part-of-Speech Tagging using Automatically Acquired Lexical Information)

  • 강인호;김도완;이신목;김길창
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1999년도 제11회 한글 및 한국어 정보처리 학술대회 및 제1회 형태소 분석기 및 품사태거 평가 워크숍
    • /
    • pp.117-122
    • /
    • 1999
  • 본 연구는 형태소 분석에 필요한 언어 지식과 품사 태깅에 필요한 확률 정보를 별도의 언어 지식 추가 없이 학습 말뭉치를 통해서 얻어내는 방법을 제안한다. 먼저 품사 부착된 학습 말뭉치로부터 형태소 사전과 결합 정보를 추출한다. 그리고 자주 발생하는 어절 및 해석상 모호성이 많은 어절에 대해서는 학습 말뭉치에서 발견된 형태소 분석 결과를 저장하여 형태소 분석에 소요되는 시간과 형태소 분석의 정확률을 높인다. 또한 미등록어의 많은 부분을 차지하는 인명, 지명, 조직명에 대해서는 정보 추출 분야에서 사용하는 고유 명사 분류법으로 해결한다. 품사 태깅을 위해서는 품사열 정보와 품사열 정보로는 해결할 수 없는 경우를 위한 어휘 정보를 학습 말뭉치에서 추출한다. 품사열 정보와 어휘 정보는 정형화 과정을 거쳐 최대 엔트로피 모델의 자질로 사용되어 품사 태깅 시스템을 위한 확률 분포를 구성한다. 본 연구에서 제안하는 방법은 학습 말뭉치를 기반으로 한다는 특성에 의해 다양한 영역에 사용하기 쉽다. 또한 어휘 정보로 품사 문맥 정보를 보완하기 때문에 품사 분류 체계와 형태소 해석 규칙에 영향을 적게 받는다는 장점을 가진다. MATEC '99 데이터 실험 결과 형태소 단위로 94%의 재현률과 93%의 정확률을 얻을 수 있었다.

  • PDF

Levenshtein 거리를 이용한 영화평 감성 분류 (Sentiment Classification of Movie Reviews using Levenshtein Distance)

  • 안광모;김윤석;김영훈;서영훈
    • 디지털콘텐츠학회 논문지
    • /
    • 제14권4호
    • /
    • pp.581-587
    • /
    • 2013
  • 본 논문에서는 레빈쉬타인 거리(Levenshtein distance)를 이용한 감성 분류 방법을 제안한다. 감성 자질에 레빈쉬타인 거리를 적용하여 BOW(Back-Of-Word)를 생성하고 이를 학습 자질로 사용한다. 학습 모델은 지지벡터기계(support vector machines, SVMs)와 나이브 베이즈(Naive Bayes)를 이용하였다. 실험 데이터로는 다음 영화 사이트로부터 영화평을 수집하였으며, 수집한 영화평은 총 2,385건이다. 수집된 영화평으로부터 감성 어휘를 수작업을 통해 수집하였으며 총 778개 어휘가 선별되었다. 실험에서는 감성 어휘에 레빈쉬타인 거리를 적용한 BOW를 이용하여 기계학습을 수행하였으며, 10-fold-cross validation 방식으로 분류기의 성능을 평가하였다. 평가 결과는 레빈쉬타인 거리가 3일 때 다항 나이브 베이즈(Muitinomial Naive Bayes) 분류기에서 85.46%의 가장 높은 정확도를 보였다. 실험을 통하여 본 논문에서 제안하는 방법이 문서 내의 철자 오류에 대해서도 분류 성능에 영향을 적게 받음을 알 수 있었다.

교과서 분석 기반 수학교육용 어휘 선정 연구: 초등학교 1~2학년을 중심으로 (Textbooks Analysis to Select Vocabulary for Mathematics Education: Focusing on 1st and 2nd Graders in the Elementary School)

  • 권미선
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제37권4호
    • /
    • pp.675-695
    • /
    • 2023
  • 어휘에 대한 이해는 효과적인 수학 학습을 위한 필수적인 요소이다. 이에 수학을 학습할 때 자주 사용되는 어휘를 수학교육용 어휘로 선정하고자 2009 개정 1~2학년 수학 교과서와 2015 개정 1~2학년 수학 교과서에서 공통적으로 사용된 고빈도 어휘를 추출하고 어휘 난이도와 유형에 따라 분류하였다. 이때 학교 현장에서 효과적으로 사용하기 위하여 학년 공통 어휘와 학기별 집중 어휘로 구분하여 제시하였다. 분석 결과, 1학년 공통 어휘는 수, 몇, 알아보다, 읽다, 모양, 쓰다, 만들다, 말하다, 나타내다, 덧셈, 뺄셈 등이 있으며, 2학년 공통 어휘는 수, 알아보다, 몇, 모형, 나타내다, 길이, 방법, 만들다, 모양, 모두 등이 있다. 2009 개정 수학 교과서와 2015 개정 수학 교과서의 고빈도 어휘는 유사한 경향을 보였으며, 이를 통해 수학교육용 어휘 선정에 실효성을 엿볼 수 있었다. 선정된 어휘는 1~5등급까지 난이도가 다양하였으며, 어휘 유형 중 사고도구어의 비중은 점차 증가하였으나 수학 전문어의 비중은 2학년 1학기 때 가장 높은 것으로 나타났다. 어휘에 대한 이해는 수학 학습에 많은 영향을 미치나 지금까지 수학교육용 어휘 목록은 제시된 바가 없다. 이 연구에서 제시된 수학교육용 어휘를 바탕으로 수학교육을 위한 다양한 어휘 자료가 개발 될 수 있을 것이다.

단서 구문과 어휘 쌍 확률을 이용한 인과관계 추출 (Causal Relation Extraction Using Cue Phrases and Lexical Pair Probabilities)

  • 장두성;최기선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2003년도 제15회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.163-169
    • /
    • 2003
  • 현재의 질의응답 시스템은 TREC(Text Retrieval Conference) 질의집합에 대해 최대 80% 정도의 응답 성공률을 보이고 있다. 하지만 질의 유형에 다라 성능의 많은 차이가 있으며, 인과관계에 대한 질의에 대해서는 매우 낮은 응답 성공률을 보이고 있다. 본 연구는 인접한 두 문장 혹은 두 문장 혹은 두 명사구 사이에 존재하는 인과관계를 추출하고자 한다. 기존의 명사구 간 인과관계 추출 연구에서는 인과관계 단서구문과 두 명사구의 의미를 주요한 정보로 사용하였으나, 사전 미등록어가 사용되었을 때 올바른 선택을 하기 어려웠다. 또한, 학습 코퍼스에 대한 인과관계 부착과정이 선행되어야 하며, 다량의 학습자료를 사용하기가 어려웠다. 본 연구에서는 인과관계 명사구 쌍에서 추출된 어휘 쌍을 기존의 단서구문과 같이 사용하는 방법을 제안한다. 인과관계 분류를 위해 나이브 베이즈 분류기를 사용하였으며, 비지도식 학습과정을 사용하였다. 제안된 분류 모델은 기존의 분류 모델과 달리 사전 미등록어에 의한 성능 저하가 없으며, 학습 코퍼스의 인과관계 분류 작업이 선행될 필요 없다. 문장 내 명사구간의 인과관계 추출 실험 결과 79.07%의 정확도를 얻었다. 이러한 결과는 단서구문과 명사구 의미를 이용한 방법에 비해 6.32% 향상된 결과이며, 지도식 학습방식을 통해 얻은 방법과 유사한 결과이다. 또한 제안된 학습 및 분류 모델은 문장간의 인과관계 추출에도 적용가능하며, 한국어에서 인접한 두 문장간의 인과관계 추출 실험에서 74.68%의 정확도를 보였다.

  • PDF

단어 의미 정보를 활용하는 이용자 자연어 질의 유형의 효율적 분류 (Efficient Classification of User's Natural Language Question Types using Word Semantic Information)

  • 윤성희;백선욱
    • 정보관리학회지
    • /
    • 제21권4호
    • /
    • pp.251-263
    • /
    • 2004
  • 질의응답 시스템에서의 질의 분석 과정은 이용자의 자연어 질의 문장에서 질의 의도를 파악하여 그 유형을 분류하고 정답 추출을 위한 정보를 구하는 것이다. 본 연구에서는 복잡한 분류 규칙 집합이나 대용량의 언어 지식 자원 대신 이용자 질의 문장에서 질의 초점 어휘를 추출하고 구문 구조적으로 관련된 단어들의 의미 정보에 기반하여 효율적으로 질의 유형을 분류하는 방법을 제안한다. 질의 초점 어휘가 생략된 경우의 처리와 동의어와 접미사 정보를 이용하여 질의 유형 분류 성능을 향상시킬 수 있는 방법도 제안한다.

임베딩 자질을 이용한 대화의 감정 분류 (Emotion Classification in Dialogues Using Embedding Features)

  • 신동원;이연수;장정선;임해창
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.109-114
    • /
    • 2015
  • 대화 시스템에서 사용자 발화에 대한 감정 분석은 적절한 시스템 응답과 서비스를 제공하는데 있어 매우 중요한 정보이다. 본 연구에서는 단순한 긍, 부정이 아닌 분노, 슬픔, 공포, 기쁨 등 Plutchick의 8 분류 체계에 해당하는 상세한 감정을 분석 하는 데 있어, 임베딩 모델을 사용하여 기존의 어휘 자질을 효과적으로 사용할 수 있는 새로운 방법을 제안한다. 또한 대화 속에서 발생한 감정의 지속성을 반영하기 위하여 문장 임베딩 벡터와 문맥 임베딩 벡터를 자질로서 이용하는 방법에 대해 제안한다. 실험 결과 제안하는 임베딩 자질은 특히 내용어에 대해 기존의 어휘 자질을 대체할 수 있으며, 데이터 부족 문제를 다소 해소하여 성능 향상에 도움이 되는 것으로 나타났다.

  • PDF

사전기반의 한국어 상품 리뷰 의견표현 자질 추출 및 분류시스템 (Dictionary-Based Opinion Features Extraction and Classification of Korean Product Reviews)

  • 육상근
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 추계학술발표대회
    • /
    • pp.631-634
    • /
    • 2008
  • 인터넷을 이용한 사람들의 사회 참여가 확대되면서 다양한 의견(Opinion)들이 급속도로 증가하고 있으며 이러한 의견을 분석하여 유용한 정보로 활용하기 위한 연구가 활발히 진행되고 있다. 그 중에서도 상품리뷰는 기업에서 연구, 개발, 마케팅의 주요 자료로 사용되고 있으며 사용자가 상품의 구매를 결정하는 중요한 요인 중 하나로 작용하고 있다. 본 논문에서는 한국어로 이루어진 상품 리뷰를 분석하여 의견 자질(Feature)을 추출하고 분류(Classification)하는 시스템을 설계하고 구현하였다. 한글 의견 자질 추출을 위하여 먼저 한글 상품 리뷰를 분석하여 의견 사전을 구축하였다. 의견 사전으로는 의견 자질과 의견 어휘, 독립의견어휘, 의견 숙어, 부정어 등의 각기 다른 세부 사전을 구축하여 리뷰 분석 시 단계적으로 적용하여 정확도를 높일 수 있도록 설계하였다. 이렇게 구현된 시스템을 평가하기 위하여 각기 다른 3개의 도메인에서 실제 한국어 리뷰를 수집하여 실험을 수행하였으며 자질 추출에서는 평균 78.86% 정확률, 61.41% 재현율을, 극성 분류에서는 평균 69.46% 정확률, 42.26% 재현율을 나타냈다.

어휘적 중의성 제거 규칙과 부분 문장 분석을 이용한 한국어 문법 검사기 성능 향상 (Improvement of Korean Grammar Checker Using Partial Parsing based on Dependency Grammar and Disambiguation Rules)

  • 소길자;남현숙;김수남;원상연;권혁철;박동인
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1998년도 제10회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.253-260
    • /
    • 1998
  • 한국어 문서에는 여러 어절을 검증해야만 처리할 수 있는 의미 오류와 문체 오류가 있다. 다수 어절 사이에 있는 오류는 부분 문장 분석을 한다. 논문에서는 의미 오류와 문체 오류를 처리할 때 어휘적 중의성 때문에 생기는 문제점을 제시하고 해결방법을 제안한다. 어휘적 중의성이란 한 단어가 두 가지 이상의 형태소 정보를 가짐을 뜻한다. 철자검사기와는 달리 문법 검사기에서는 어휘적 중의성을 제거하지 않으면 여러 가지 검사 오류가 발생한다. 이 논문에서는 의미, 문체 시스템에서 어휘적 중의성 때문에 검사 오류가 발생할 수 있는 과정을 크게 세 단계로 분류하였다. 연어 오류가 발생할 수 있는 검사단어가 어휘적 중의성을 가지면 표제어가 다른 규칙이 여러 개 존재한다. 이 때 규칙 선택 문제가 생긴다. 중의성 문제는 부분 문장분석 과정에서도 지배소와 의존소 사이의 의존관계를 정확하게 설정하기 어렵게 한다. 본 논문에서는 각 단계에서 발생한 문제를 최소화하여 문법 검사기의 성능을 향상시킨다.

  • PDF

워드넷 신셋에 대한 사건구조 프레임 반자동 태깅 (Semi-automatic Event Structure Frame tagging of WordNet Synset)

  • 임서현
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.101-105
    • /
    • 2018
  • 이 논문은 가장 잘 알려진 어휘부중 하나인 워드넷의 활용 범위 확장을 위해 워드넷 신셋에 "사건구조 프레임(Event Structure Frame)"을 주석하는 연구에 관한 것이다. 워드넷을 비롯하여 현재 사용되고 있는 어휘부는 풍부한 어휘의미정보가 구조화되어 있지만, 사건구조에 관한 정보를 포함하고 있지는 않다. 이 연구의 가장 큰 기여는 워드넷에 사건구조 프레임을 추가함으로써 워드넷과의 연결만으로 핵심적인 어휘의미정보를 모두 추출할 수 있도록 해준다는 점이다. 예를 들어 텍스트 추론, 자연어처리, 멀티 모달 태스크 등은 어휘의미정보와 배경지식(상식)을 이용하여 태스크를 수행한다. 워드넷에 대한 사건구조 주석은 자동사건구조 주석 시스템인 GESL을 이용하여 워드넷 신셋에 있는 예문에 먼저 자동 주석을 하고, 오류에 대해 수동 수정을 하는 반자동 방식이다. 사전 정의된 23개의 사건구조 프레임에 따라 예문에 출현하는 타겟 동사를 분류하고, 해당 프레임과 매핑한다. 현재 이 연구는 시작 단계이며, 이 논문에서는 빈도 순위가 가장 높은 100개의 동사와 각 사건구조 프레임별 대표 동사를 포함하여 총 106개의 동사 레마에 대해 실험을 진행하였다. 그 동사들에 대한 전체 워드넷 신셋의 수는 1337개이다. 예문이 없어서 GESL이 적용될 수 없는 신셋을 제외하면 1112개 신셋이다. 이 신셋들에 대해 GESL을 적용한 결과 F-Measure는 73.5%이다. 향후 연구에서는 워드넷-사건구조 링크를 계속 업데이트하면서 딥러닝을 이용해 GESL 성능을 향상 할 수 있는 방법을 모색할 것이다.

  • PDF