• Title/Summary/Keyword: 어획성능

Search Result 89, Processing Time 0.021 seconds

Catching efficiency of biodegradable trammel net for swimming crab (Portunus trituberculatus) in the Yeonpyeong fishing ground of Korea (연평어장에서 생분해성 꽃게 삼중자망의 어획성능)

  • Kim, In-Ok;Lee, Gun-Ho;Cho, Sam-Kwang;Cha, Bong-Jin;Sohn, Byung-Kyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.4
    • /
    • pp.322-336
    • /
    • 2012
  • To study the catching efficiency of biodegradable trammel net for swimming crab (Portunus trituberculatus), three types (biodegradable, monofilament and multifilament) of trammel nets were used in the field test, and the tests were carried out 16 times with two different mesh sizes (105mm and 160mm) in the Yeonpyeong fishing ground of Korea, 2009~2011. The catching efficiency of three type nets was analyzed by catch in number, catch in weight and average weight per individual of small and large size swimming crab by net types and mesh sizes. Statistical T-test was also carried out to verify the efficiency between the three types of nets. The results are as follows. The catch in number of swimming crab was 24,667 and formed about 81.0% of total catch. Of all swimming crab catch, small swimming crabs with less than 64mm in carapace length which is a prohibited landing size by law formed 48.1%, larger swimming crabs with more than 64mm in carapace length which is a landing size formed 51.9%. In 105mm mesh size trammel net test, the catch share in number of small size swimming crab by biodegradable trammel net was 47.5% in comparison with multifilament trammel net and 74.2% in comparison with monofilament trammel net, so biodegradable trammel net has more protective effects on small size swimming crab than other types of trammel nets. The protective effects for small size swimming crab by biodegradable trammel net was 25.8~52.5% in comparison with other types of trammel nets. The catch share in weight of large size swimming crab by biodegradable trammel net was 98.3% in comparison with multifilament trammel net and 92.3% in comparison with monofilament trammel net, so biodegradable trammel net has a similar catch efficiency to multifilament trammel net. The results of 160mm mesh size trammel net test have shown similar results of 105mm mesh size trammel net test. This study shows that biodegradable trammel net is a more useful fishing gear than multifilament and monofilament trammel net because biodegradable trammel net has lower catch rate than other types of nets in small size swimming crab and similar catch rate than multifilament trammel net which is a well used net by fishermen.

Fishing Mechanism of Pots and their Modification 1. Behavior of Conger Eel, Astroconger myriaster, to the Bamboo and Plastic Pots (통발어구의 어획기구 및 개량에 관한 연구 1. 대통발과 플라스틱통발에 대한 붕장어의 행동)

  • KIM Dae-An;KO Kwan-Soh
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.4
    • /
    • pp.341-347
    • /
    • 1987
  • The behavior of conger eel, Astroconger myriaster (Brevoort), to the bamboo and plastic pots with baits was investigated alternately in two experimental water tanks. One of the pots being dropped on the tank bottom, the eels touched it to obtain the bait probably by their sense of smell, and increased rapidly in the number of touch to show a maximum within 30 minutes. But the touch was made mainly to the pot wall at which the bait was located and quite accidentally to the pot mouth. The eels touched the pot mouth retreated frequently without attempting to enter the pot and their entering was very hampered by the bamboo funnel constituting the pot mouth. However, a entering, if made, encouraged other touches and the touches ascribed other enterings. But, if 30 minutes elapsed, the number of touch decreased gradually and so the enterings were little made. The ability of pots attracting the eels into them was varied with their inclination to the tank bottom and the bait position in them. That is, the pot which was laid horizontally showed high ability of attracting in case in which the bait was fixed in the vicinity of its mouth. The pot, inclined by $30^{\circ}$ by lifting its tail and had a bait left free, showed almost equal ability to the horizontal pot with a bait in the vicinity of mouth. But the pot, inclined by $30^{\circ}$ by lifting its mouth and had a bait left free, showed a very low attracting. A comparison between the bamboo and plastic pots gave only that the entering of the eels became later several minutes in the latter.

  • PDF

Development of Hydraulic Jet Dredge ( 1 ) - Water tank Experiment for the Excavating Performance of Water-Jet Nozzle on the Sand - (분사식 행망의 개발에 관한 연구 ( I ) - 분사노즐의 사면 굴삭성능에 관한 수조실험 -)

  • Jo, Bong-Gon;Go, Gwan-Seo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.4
    • /
    • pp.255-265
    • /
    • 1991
  • In order to find the excavating performance of water-jet nozzle on the sand, the authors were carried out the excavating experiment with the model nozzles which were semi circular sectioned nozzles and rectangular nozzle in water tank. The results were as follows. 1) Excavating maximum depth and width on the sand by the water jet were straightly increased in proportion to the velocity of water jet and the section area of nozzle, and that, by the nozzle distance from the excavating point on the sand, the depth was decreased, while the width was increased straightly. 2) Rectangular nozzle which the thick of hole is 1mm, was a little bit better than the circular nozzle of the same sectioned area on the excavating performance. 3) Empirical equations between the velocity of water jet, the distance of nozzle, and the maximum excavating depth and width by angle of nozzle were expressed as linear, they were as follows on the 45$^{\circ}$ angle of the rectangular nozzle(1$\times$12mm); D=0.0093V sub(0)-0.23H+5.7. W=0.0147V sub(0)+1.06H+10.2. where, D is the maximum excavating depth(cm), W is the maximum excavation width(cm), V sub(0) is the velocity of water jet(cm/s); 926$\leq$V sub(0)$\leq$1504, H is the distance(cm) from nozzle tip to water-jetted point on the surface of sand.

  • PDF

Change of fishing power index by technological development in the offshore squid jigging fishery (근해오징어채낚기어업에서 어로기술발달에 따른 어획성능지수 변동)

  • OH, Taeg-Yun;SEO, Young-Il;CHA, Hyung-Kee;JO, Hyun-Su;AN, Young-Su;LEE, Yoo-Won
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.54 no.3
    • /
    • pp.224-230
    • /
    • 2018
  • Squid is one of the important fisheries resources in Korea. Therefore, squid has been designated and managed as a target species of total allowable catch (TAC) since 2007, but the catch amount is gradually decreasing. The analysis was conducted to identify the change of relative fishing power index to develop the vessel and gear technology that may have improved the fishing efficiency of the offshore squid jigging fishery from 1960s to 2010s. Gross tonnage per fishing vessel increased with the increase in size until 1990, but then gradually decreased to 41.0 tons in 2000 and 37.1 tons in 2010. The illuminating power (energy consumption) by fishing lamps increased to 180 kW in 2005 and stabilized to 120 kW in 2015. Jigging machine started to be supplied to fishing vessels from the early 1970s, and fish finders began to be supplied in the early 1980s and gradually increased. Therefore, the relative fishing power index in the offshore squid jigging fishery increased from 1.0 in 1980 to 1.1 in 1990, to 3.5 in 2000 and to 2.5 in 2010, but the increment rate slowed down gradually. The results are expected to contribute to reasonable fisheries stock management.

Change of relative fishing power index from technological development in the otter trawl fishery (트롤어업에서 어로기술개발에 따른 어획성능지수 변동)

  • JO, Hyun-Su;SEO, Young-Il;OH, Taeg-Yun;AN, Young-Su;KIM, Byung-Yeob;IM, Yeong-Gyeong;LEE, Yoo-Won
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.56 no.1
    • /
    • pp.26-36
    • /
    • 2020
  • Thousands of pelagic and demersal fishes inhabit the waters around Korea and many of them are overexploited. One of the reasons is technological development, which increases the efficiency of the vessels continuously. The analysis was conducted to identify the change of fishing power index to develop the vessel and gear technology that may have improved the fishing efficiency of the otter trawl fishery from 1960s to 2010s. Gross tonnage was decreased stably, but horse power was increased annually. The perimeter of net mouth was somewhat longer, but little changed. Color fish finder was utilized from the mid-1960s. Hydraulic net drum were introduced in the early 1990s, and supply rate was gradually increased. Surveys on the supply and upgrading of fishing equipment utilized visiting research. Therefore, the relative fishing power index in the trawl fishery increased about two to three times in the 2010s compared to the 1980s. The results are expected to contribute to reasonable fisheries stock management.

Change of relative fishing power index from technological development in the offshore conger eel pot fishery (근해장어통발어업에서 어로기술발달에 따른 어획성능지수 변동)

  • SEO, Young-Il;JEONG, Geum-cheol;CHA, Hyung-kee;JO, Hyun-Su;LEE, Yoo-Won;JANG, Choong-Sik;AN, Young-Su
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.56 no.1
    • /
    • pp.37-44
    • /
    • 2020
  • The change of fishing power index was analyzed to identify the development of the vessel and gear technology that may improve the fishing efficiency of the offshore conger eel pot fishery from 1980s to 2015. Gross tonnage per fishing vessel was rapidly increased annually. The standard of pot was maintained, but the number of pot used rapidly increased by using conger eel pot hauling devices, carrying and loading devices, main line hauler, casting devices and slide type pot. Fish finder system to identify fishing ground information and the conger eel pot hauling devices were modernized, and supply rate was also increased. Therefore, the relative fishing power index in the offshore conger eel pot fishery increased from 1.0 in 1980 to 1.3 in 1990, to 1.8 in 2000 and to 2.0 in 2015. The results are expected to contribute to reasonable fisheries stock management of the offshore conger eel pot fishery.

Change of relative fishing power index from technological development in the offshore large powered purse seine fishery (근해대형선망어업에서 어로기술개발에 따른 어획성능지수 변동)

  • SEO, Young-Il;HWANG, Kang-Seok;CHA, Hyung-Kee;OH, Taeg-Yun;JO, Hyun-Su;KIM, Byung-Yeob;RYU, Kyong-Jin;LEE, Yoo-Won
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.1
    • /
    • pp.12-18
    • /
    • 2017
  • Lots of fishery stocks are overexploited and the overcapacity exists in Korean fishing fleets. One of the reasons is technological development, which increases the efficiency of the vessels continuously. The analysis was conducted to identify the change of fishing power index to develop the vessel and gear technology that may have improved the fishing efficiency of the offshore large powered purse seine fishery from 1960s to 2010s. Gross tonnage and horse power per fishing vessel was increased annually. Fishing gear material was changed to the knotless webbing to settle faster. Fishing equipments was modernized and supply rate was also increased. Therefore the relative fishing power index in the offshore large powered purse seine fishery increased from 0.4 in 1970 to 1.0 in 1980, to 1.5 in 2000 and to 1.6 in 2010, but the rate of increase slowed down gradually. The results are expected to contribute to reasonable fishery stock management.

The Analysis of a Fishing System that Employs a Red Seabream Feeding Behavior in the Long Line Fishery (연승어업에서 참돔의 섭식행동을 응용한 어획시스템의 성능 분석)

  • KANG, Kyoung Bum;KOO, Myung-Sung;KIM, Jong Beom;AHN, Jang-Young;CHOI, Chan Moon;LEE, Chang Heon;KIM, Byoung Youb;KIM, Suk Jong
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.2
    • /
    • pp.570-580
    • /
    • 2017
  • In this study, we designed a fishing system to reproduce the underwater movement of the living Sword tip squid (Loligo edulis) used as bait in the red seabream long line fishery, and conducted the experiment of the fishing operation in 2 ways, i.e., a pole and line fishing method (fishermen) and a bait control fishing system used at fishing sites. Based on the catches in fishing operation, the experiment was conducted over a six times (2014 & 2015), and then 107 fishes were caught by the line fishing method while 57 fishes were caught by the bait control fishing system. The fishermen method actively controlled the speed of gear movement upward and downward while checking the reaction of red seabreams to the bite in the process which a jerk was transmitted to single line hook fishing gear manually. The bait control fishing system is a passive method which fishermen visually check only the movements at the end of fishing pole, enabled differentiation of bite reactions of red seabream during fishing operation. Thus, the difference between fishermen method and the bait control fishing system was found to about 53.3% in the catches. We confirmed the possibility of a site fishing operation based on the bait control fishing system designed newly as a result of this study. Improvement is in several areas for commercialization at the site. This fishing system is expected to be able to find wide-ranging applications as a new labor-saving method for the fishing red seabreams if it is applied to the fishing sites after aforesaid process.

Modification of Fishing Baskets for Crab , Charybdis japonica (민꽃게 통발의 개량에 관한 연구)

  • Jang, Deg-Jong;Kim, Dae-An;Kim, Young-Ju
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.2
    • /
    • pp.90-96
    • /
    • 1997
  • Until now the research was usually related in the fishing basket for crab charybdis japonica, concentrated one's effort to modification on the construction, shape, number of entrance of fishing basket etc.. But there's not make good used to the basically habit, shelter behavior of crab. etc., and was not fundamentally modified to the ability attracting the crab on net fishing basket. In this paper, first of all investigated to the behavior of crab in water tank and then two types modification fishing baskets could the increasing to ability attracting of crab on fishing basket were designed from the result obtained in this experiment and compared with modificated net fishing basket by Kim.Go(1987.1990) at a field and tank experiment. The results obtained are summarized as follows : 1. Being the fishing baskets had dropped in the tank bottom, the touched rate and reacted rate of crab according the elapsed time agree with to experiment of Kim.Go(1987.1990)in the mainly. however, in case of plate type tangle net, the touched rate of crab increased for a short time and then decreased and the reacted rate increased in a hurry to show a maximum and then was established. 2. The beginning catch time of crab was shortest in the plate type tangle net than the any fishing baskets because it's immediately entangled if the crab was touched only a part of body on net and latest in the net fishing basket. 3. A distance of between the touched rate and the reacted rate curve were the most short, wide in the plate type tangle net. therefore, the ability attracting of crab was excellent than the any fishing baskets and in case of pipe type fishing baskets, between the 150mm and 250mm seemed not difference and showed a tendency to increasing against the net fishing baskets. 4. Pipe type fishing baskets seemed to become a good shelting place for the crab because it showed a tendency to stagnate at the inside in that. 5. The mean catch per pot of crab among the net fishing basket, pipe type fishing baskets, plate type tangle net were highest in the pipe type fishing baskets than the net fishing basket and lowest plate type tangle net. Therefore it showed to difference against the tank experiment.

  • PDF

Studies on the Improvement of the Fishing Efficiency of Purse Seine in the Sea Area of Cheju Island -The Changes of Seine Volume and Tension in the Purseline During Pursing- (제주도 주변해역 선망의 어획성능 향상에 관한 연구 -짐줄 체결 중 선망의 용적과 짐줄의 장력 변화 -)

  • 김석종
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.2
    • /
    • pp.93-101
    • /
    • 1999
  • A simple experimental method was used in an attempt to realize the elevation of the fishing ability of purse seine in the sea area of Cheju Island, the changes of seine volume and tension in the purseline during pursing. Experiments carried out on the six types simplified reduced model seines which were made of knotless nettings. The nettings were woven in different leg length 4.3, 5.0, 5.5, 6.0, 6.6 and 7.7mm of polyester 28 tex two threads two-ply twine, and each of the seines were named I, II, III, IV, V and Ⅵ seine. Dimension of seine models were 450cm for corkline and 85cmfor seine depth, each seines rigged up 160g of float for a floatline and 50g (underwater weight) of lead for a leadline. These model purse seines were made of the scale of 1/200 of its full scale, a 120 ton in the near sea of Cheju Island. Designing and testing for the model purse seines were based on the Tauti's law. Experiments were measured in the observation channel of a flume tank at the static conditions set up shooting and pursing equipments. Motion of purse seine during purse line was recorded by the two sets video camera for VTR which were placed in top and front of the model seine. The reading coordinate of seine volume carried out by the video digitization system, disk data for the purseline tension. An analysis were performed on the changes seine volume and tension in the purseline during pursing. The results obtained were as follows: 1. The seine volume during pursing was largest for Ⅵ seine with smallest d/l followed by V, IV, III, II and I seines, and tension in the purseline was small. 2. Seine volume during pursing can be expressed by the following equation; CVt=l-EXP[{2.79 (d/l)+0.35}t-33.37 (d/l) + 0.57] Where CVt is volume ratio, d is twine diameter, l is leg length and t is pursing time (sec). 3. Tension in the purse line during pursing can be expressed by the following equation; T= 1- EXP {0.57t + 13.36 (d/l)+2.97} Where T is tension (kg) in the purseline during pursing.

  • PDF