• 제목/요약/키워드: 양전자방출단층촬영장치

검색결과 10건 처리시간 0.057초

주요 양전자 방출 핵종의 생성반응 단면적 평가

  • ;Zhuang Youxiang
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.157-162
    • /
    • 1998
  • 양전자 단층 촬영장치(PET)에 사용되는 주요 양전자 방출 핵종들의 생성 단면적을 평가하였다. 평가한 생성 반응들은 $^{14}$ N(p,$\alpha$)$^{11}$ C,$^{16}$ O(p,$\alpha$)$^{13}$N, $^{14}$ N(d,n)$^{15}$ O,$^{18}$ O(p,n)$^{18}$ F,$^{20}$ Ne(d,$\alpha$)$_{18}$ F 이며, 입사 입자의 에너지 범위는 반응 문턱 에너지부터 약 150 MeV까지이다. 또한 하전입자 범 모니터용 표준 단면적으로서 $^{27}$ Al에 d 및 $^3$He, $\alpha$가 반응하여 $^{22}$ Na가 생성되는 반응의 단면적들을 입사 에너지 약 120 MeV까지 평가하였다. 실험치를 fitting하게나 ALICE95 코드를 이용하여 이론적 계산을 수행하였는데, 평가 단면적의 표준 편차는 10-30%이다 이들 평가 단면적들은 가속기를 이용한 PET용 핵종의 생산율 계산 및 빔 모니터의 표준 단면적으로 사용하기에 적절한 것으로 판단된다.

  • PDF

"세계적인 뇌과학 R&D 기지 만들터"

  • Sim, Jae-U
    • The Science & Technology
    • /
    • 9호통권424호
    • /
    • pp.20-22
    • /
    • 2004
  • "이제 미지의 영역은 뇌뿐입니다. 영상장치의 수준에 따라 각국의 연구성과는 달라질 겁니다." PET(양전자 방출 단층촬영 장치)를 세계 최초로 개발, 뇌영상 연구분야의 세계 3대 석학 가운데 한 사람으로 꼽히는 UC어바인 조장희(68) 교수는 쩌렁쩌렁한 목소리에 기백이 넘쳤다. 고희를 앞둔 나이가 무색할 정도였다. 한국과학기술원과 광주과학기술원의 초빙 석좌교수 시절(1978~98년)의 거침없는 성격은 변함이 없었고, 뇌과학의 미래에 대한 그의 확신은 여전했다. 조 교수는 자신의 마지막 연구 인생을 조국에서 불태울 수 있는 기회를 잡았다. 가천의대가 조 교수를 영입해 370억 원을 들여 최첨단 뇌과학연구소를 세우기로 한 것이다. 조 교수에게는 15년간 연봉 30만 달러를 보장하는 파격적인 조건을 제시했다. 조 교수가 맡게 될 뇌과학영상연구소는 뇌 속에서 벌어지는 미세한 현상을 손바닥 보듯 들여다볼 수 있는 방법과 장치를 개발하게 된다. 가장 우선적인 목표는 MRI(자기공명 영상장치)와 PET를 합친 영상장치의 세계 최초 개발이다.

  • PDF

MR-based Partial Volume Correction Using Hoffman Brain Phantom Data and Clinical Application (자기공명영상을 이용한 양전자방출단층촬영의 부분용적효과 보정 및 임상적용)

  • 김동현;이상호;정해조;윤미진;이종두;김희중
    • Progress in Medical Physics
    • /
    • 제14권3호
    • /
    • pp.203-210
    • /
    • 2003
  • PET (positron emission tomography) permits the investigation of physiological and biochemical processes in vivo. The accuracy of quantifying PET data is affected by its finite spatial resolution, which causes partial volume effects. In this study, we developed a method for partial volume correction using Hoffman phantom PET and MR data, and applied various FWHM (full width at half maximum) levels. We also applied this method to PET images of normal controls and tested for the possibility of clinical application. $^{18}$ F-PET Hoffman phantom images were co-registered to MR slices. The gray matter and white matter regions were then segmented into binary images. Each binary image was convolved by 4, 8, 12, 16 mm FWHM levels. These convolved images of gray and white matter were merged corresponding to the same level of FWHM. The original PET images were then divided by the convolved binary images voxel-by-voxel. These corrected PET images were multiplied by binary images. The corrected PET images were evaluated by analyzing regions of interests, which were drawn on the gray and white matter regions of the original MR image slices. We calculated the ratio of white to gray matter. We also applied this method to the PET images of normal controls. On analyzing the corrected PET images of Hoffman phantom, the ratios of the corrected images increased more than that of the uncorrected images. With the normal controls, the ratio of the corrected images increased more than that of the uncorrected images. The ratio increase of the corrected PET images was lower than that of the corrected phantom PET images. In conclusion, the method developed for partial volume correction in PET data may be clinically applied, although further study may be required for optimal correction.

  • PDF

The development of pH reading system based on vision system (영상 기반 pH 산도 측정 시스템 개발)

  • Moon, Ha-Jung;Lee, Dong-Hoon
    • Journal of IKEEE
    • /
    • 제17권4호
    • /
    • pp.398-406
    • /
    • 2013
  • Nuclear medicine imaging devices such as PET diagnose disease after injecting radiopharmaceuticals in human body for diagnosis. Radiopharmaceuticals should maintain the proper pH for human body safety. In general, pH paper is used to measure the pH of the radiopharmaceutical. pH of the sample compared with the standard color chart is used for measurement. However, the pH reading difference according to the experience of a rater can be generated. Also, a pH meter for measuring pH has a high sensitivity and contamination of the sensor must be avoided. In this paper, we developed the new hardware device for pH reading method and software was developed with vision algorithm to measure pH easily and simply.

Development and optimization of C-11 gas target system in KOTRON-13 cyclotron (KOTRON-13 사이클로트론의 고효율C-11 가스 표적장치)

  • Lee, Hong-Jin;Lee, Won-Kyeong;Park, Jun-Hyung;Moon, Byung-Seok;Lee, In-Won;Chae, Sung-Ki;Lee, Byung-Chul;Kim, Sang-Eun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • 제15권1호
    • /
    • pp.86-89
    • /
    • 2011
  • Purpose: The KOTRON-13 cyclotron was developed in South Korea and was introduced to regional cyclotron centers to produce short-lifetime medical radioisotopes. However, this cyclotron has limited capacity to produce carbon-11 isotope so far. We herein study how to develop and optimize an effective carbon-11 target system in the KOTRON-13 cyclotron by changing cooling system, combing with fluorine-18 target and evaluating beam currents. Materials and Method: To develop the optimal carbon-11 target and an effective cooling system, we designed the carbon-11 target system by Stopping and Range of Ions in Matter (SRIM) simulation program and considered the cavity pressure during irradiation at target grid. In this investigation, we evaluated the yield of carbon-11 production at different beam currents and the stability of the operation of the KOTRON-13 cyclotron. Results: The production of carbon-11 was enhanced from about 1.700 mCi ($50{\mu}A$) to 2,000 mCi ($60{\mu}A$) on the carbon-11 target which developed by seoul national university bundang hospital (SNUBH) and Samyoung Unitech. Additionally, the cooling condition was showed stable to produce carbon-11 under high beam current. Conclude: The carbon-11 target system of the KOTRON-13 cyclotron was successfully developed and improved carbon-11 production. Consequently, the operation of carbon-11 target system was highly effective and stable compare with other commercial cyclotrons. Our results are believed that this optimal carbon-11 target system will be helpful for the routine carbon-11 production in the KOTRON-13 cyclotron.

  • PDF

Defining the Tumour and Gross Tumor Volume using PET/CT : Simulation using Moving Phantom (양전자단층촬영장치에서 호흡의 영향에 따른 종양의 변화 분석)

  • Jin, Gye-Hwan
    • Journal of the Korean Society of Radiology
    • /
    • 제15권7호
    • /
    • pp.935-942
    • /
    • 2021
  • Involuntary movement of internal organs by respiration is a factor that greatly affects the results of radiotherapy and diagnosis. In this study, a moving phantom was fabricated to simulate the movement of an organ or a tumor according to respiration, and 18F-FDG PET/CT scan images were acquired under various respiratory simulating conditions to analyze the movement range of the tumor movement by respiration, the level of artifacts according to the size of the tumor and the maximum standardized uptake value (SUVmax). Based on Windows CE 6.0 as the operating system, using electric actuator, electric actuator positioning driver, and programmable logic controller (PLC), the position and speed control module was operated normally at a moving distance of 0-5 cm and 10, 15, and 20 reciprocations. For sphere diameters of 10, 13, 17, 22, 28, and 37 mm at a delay time of 100 minutes, 80.4%, 99.5%, 107.9%, 113.1%, 128.0%, and 124.8%, respectively were measured. When the moving distance was the same, the difference according to the respiratory rate was insignificant. When the number of breaths is 20 and the moving distance is 1 cm, 2 cm, 3 cm, and 5 cm, as the moving distance increased at the sphere diameters of 10, 13, 17, 22, 28, and 37 mm, the ability to distinguish images from smaller spheres deteriorated. When the moving distance is 5 cm compared to the still image, the maximum values of the standard intake coefficient were 18.0%, 23.7%, 29.3%, 38.4%, 49.0%, and 67.4% for sphere diameters of 10, 13, 17, 22, 28, and 37 mm, respectively.

Analysis of Scattering Rays and Shielding Efficiency through Lead Shielding for 0.511 MeV Gamma Rays Based on Skin Dose (피부선량을 기준으로 0.511 MeV 감마선에 대한 납 차폐체의 산란선 및 차폐 효율 분석)

  • Jang, Dong-Gun;Park, Eun-Tae
    • Journal of radiological science and technology
    • /
    • 제43권4호
    • /
    • pp.259-264
    • /
    • 2020
  • Radiation causes radiation hazards in the human body. In Korea, a case of radiation necrosis occurred in 2014. In this study, the scatter and shielding efficiency according to lead shielding were classified into epidermis and dermis for 0.511 MeV used in nuclear medicine. In this study, experiments were conducted using the slab phantom that represents calibration and the dose of human trunk. Experimental results showed that the shielding rate of 0.25 mmPb was 180% in the epidermis and 96% in the dermis. Shielding at 0.5mmPb showed shielding rates of 158%in the epidermis and 82% in the dermis. As a result of measuring the absorbed dose by subdividing the thickness of the dermis into 0.5 mm intervals, when the shielding was carried out at 0.25 mmPb, the dose appeared to be about 120% at 0.5 mm of the dermis surface, and the dose was decreased at the subsequent depth. Shielding at 0.5 mmPb, the dose appeared to be about 101% at the surface 0.5 mm, and the dose was measured to decrease at the subsequent depth. This result suggests that when lead aprons are actually used, the scattering rays would be sufficiently removed due to the spaces generated by the clothes and air, Therefore, the scattered ray generated from lead will not reach the human body. The ICRU defines the epidermis (0.07), in which the radiation-induced damage of the skin occurs, as the dose equivalent. If the radiation dose of the dermis is considered in addition, it will be helpful for the evaluation of the prognosis for radiation hazard of the skin.

Assessment of Attenuation Correction Algorithms With a $^{137}$Cs Point Source (Cs-137 점선원을 이용한 감쇠보정기법들에 대한 평가)

  • Bong, Jung-Kyun;Kim, Hee-Joung;Park, Hae-Jung;Kwon, Yun-Youn;Son, Hye-Kyoung;Yun, Mi-Jin;Lee, Jong-Doo;Jung, Hae-Jo
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 한국의학물리학회 2004년도 제29회 추계학술대회 발표논문집
    • /
    • pp.96-99
    • /
    • 2004
  • The objective of this study is to assess attenuation correction algorithms utilized in a multipurpose whole-body GSO PET scanner. Four different types of phantoms were tested using different types of attenuation correction techniques. FOV (Field of View) of 256mm was used for brain PET imaging. For compensating attenuation, transmission data of a $^{137}$Cs point source were acquired after the F-18 emission source was infused to the phantoms. Scatter correction were peformed. Reconstructed images of the phantoms were assessed. In addition, reconstructed images of a normal subject were compared and assessed by nuclear medicine physicians. As a result, decreased intensity at the central portion of the attenuation map with cylindrical phantom was noticed during use of the measured attenuation correction. On the other hand, segmentation or remapping attenuation correction provided uniform phantom image. the images reconstructed from the clinical brain data explained the attenuation of a skull, at though reconstructed images of the phantoms couldn't explain it. in conclusion, the complicated and improved attenuation correction methods were required to obtain the better accuracy of the quantitative brain PET images. Our study will be useful in improving quantitative brain PET imaging modalities with attenuation correction of $^{137}$Cs transmission source.

  • PDF

A Comparative Study of Production of [68Ga]PSMA-11 with or without Cassette Type Modules (비 카세트 방식과 카세트 방식을 이용한 [68Ga]PSMA-11의 자동 합성 방법 비교)

  • Hyun-Sik, Park;Byeong-Min, Jo;Hyun-Ho, An;Hong-Jin, Lee;Jin-Hyeong, Lee;Gyeong-Jae, Lee;Byung-Chul, Lee;Won-Woo, Lee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • 제26권2호
    • /
    • pp.15-19
    • /
    • 2022
  • Purpose [68Ga]PSMA-11 is needed the high reproducibility, excellent radiochemical yield and purity. In term of radiation safety, the radiation exposure of operator for its production also should be considered. In this work, we performed a comparative study for the fully automated synthesis of [68Ga]PSMA-11 between non-cassette type and cassette type. Materials and Methods Two different type of modules (TRACERlab FX N pro for non-cassette type and BIKBox for cassette type) were used for the automated production of [68Ga]PSMA-11. According to the previously identified elution profile, Only 2.5 ml with high radioactivity was used for the reaction. After adjusting the pH of the reaction solution with HEPES buffer solution, the precursor was added and reacted with at 95 ℃ for 15 minutes. The reaction mixture was separated and purified using a C18 light cartridge. The product was eluted with 50% EtOH/saline solution and diluted with saline. It was completed by sterilizing filter. In the non-cassette type, the aforementioned process must be prepared directly. However, in the cassette method, synthesis was possible simply by installing a kit that was already completed. Results Both total [68Ga]PSMA-11 production time were 25±3(non-cassette type) and 23±3 minutes(cassette type). The radiochemical yield of the non-cassette type(65.5±5.7%) was higher than that of the cassette type(61.6±4.8%) after sterilization filter. The non-cassette type took about 120 minutes of preparation time before synthesis due to washing of synthesizer and reagent preparation. However, since the cassette type does not require washing and reagent preparation, it took about 20 minutes to prepare before synthesis. Both type of synthesizer had a radiochemical high purity(>99%). Conclusion The non-cassette type production of [68Ga]PSMA-11 showed higher radiochemical yield and lower cost than the cassette type. However, The cassette type has an advantage in terms of preparation time, convenience, and equipment maintenance.

Assessment of Quantitative Analysis Methods for Lung F-18-Fluorodeoxyglucose PET (폐 종양 FDG PET 영상의 다양한 추적자 역학 분석 방법 개발과 유용성 고찰)

  • Kim, Joon-Young;Choi, Yong;Choi, Joon-Young;Lee, Kyung-Han;Kim, Sang-Eun;Choe, Yearn-Seong;Kim, Yong-Jin;Kim, Byung-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • 제32권4호
    • /
    • pp.332-343
    • /
    • 1998
  • Purpose: The purpose of this study was to assess the diagnostic accuracy of various quantitation methods using F-18-fluorodeoxyglucose (FDG) in patients with malignant or benign lung lesion. Materials and Methods: 22 patients (13 malignant including 5 bronchoalverolar cell cancer; 9 benign lesions including 1 hamartoma and 8 active inflammation) were studied after overnight fasting. We performed dynamic PET imaging for 56 min after injection of 370 MBq (10 mCi) of FDG. Standardized uptake values normalized to patient's body weight and plasma glucose concentration (SUVglu) were calculated. The uptake rate constant of FDG and glucose metabolic rate were quantified using Patlak graphical analysis (Kpat and MRpat), three compartment-five parameter model (K5p, MR5p), and six parameter model taking into account heterogeneity of tumor tissue (K6p, MR6p). Areas under receiver operating characteristic curves (ROC) were calculated for each method. Results: There was no significant difference of rate constant or glucose metabolic rate measured by various quantitation methods between malignant and benign lesions. The area under ROC curve were 0.73 for SUVglu, 0.66 for Kpat, 0.77 for MRpat, 0.71 for K5p, 0.73 for MR5p, 0.70 for K6p, and 0.78 for MR6p. No significant difference of area under the ROC curve between these methods was observed except the area between Kpat vs. MRpat (p<0.05). Conclusion: Quantitative methods did not improve diagnostic accuracy in comparison with nonkinetic methods. However, the clinical utility of these methods needs to be evaluated further in patients with low pretest likelihood of active inflammation or bronchoalveolar cell carcinoma.

  • PDF