본 논문에서는 서열순서화문제를 위한 새로운 혼합형 유전알고리즘을 제안한다. 제안된 유전알고리즘에서는 보로노이양자 화교차를 교차연산자로 사용하고 경로보전 3-최적화를 지역탐색 휴리스틱으로 사용한다. 보로노이양자화교차는 주어진 문제 인스턴스의 상위 정보를 이용하는 교차연산자이다. 이것은 원래 순회판매원문제를 위해서 제안된 교차연산자이기 때문에 서열순서화문제에 적용하기 위해서는 상당한 변형을 필요로 한다. 본 연구에서는 서열순서화문제에 맞도록 보로노이양자화교차를 적절히 변형하고, 변형된 보로노이양자화교차에서 필요로 하는 가능해생성알고리즘, 선행관계사이클분해알고리즘, 유전자거리지정방법 등을 개발하였다. TSPLIB와 ZIB-MP-Testdata로부터 얻어진 서열순서화문제 인스턴스들에 대한 실험결과, 제안된 유전알고리즘이 비교된 다른 유전알고리즘들에 비해서 더 안정적이고 성능이 우수한 것으로 나타났다.
특징 선택은 패턴 인식의 성능을 향상시키기 위해 부분집합을 구성하는 중요한 문제다. 특징 선택에는 순차 탐색 알고리즘으로부터 확률 기반의 유전 알고리즘까지 다양한 접근 방법이 적용 되었다. 본 연구에서는 특징 선택을 위해 양자 비트, 상태의 중첩 등 양자 컴퓨터 개념을 기반으로 하는 양자 기반 유전 알고리즘(QGA: Quantum-inspired Genetic Algorithm)을 적용하였다. QGA 성능은 전통적인 유전 알고리즘(CGA: Conventional Genetic Algorithm)을 적용한 특징 선택 방법과 분류율 및 평균 특징 개수의 비교를 통해 이루어졌으며, UCI 데이터를 이용한 실험 결과 QGA를 적용한 특징 선택 방법이 CGA를 적용한 경우에 비해 전반적으로 좋은 성능을 보임을 확인 할 수 있었다.
본 논문에서는 M-ary 홀로그래픽 데이터 저장장치에 적용 가능한 진화 연산 알고리즘 기반 적응적 문턱치 검출 기법을 제안한다. 전통적으로 유전 알고리즘은 생명체의 유전자 진화과정에 근간하여 최적 혹은 준최적 문제와 데이터 추정을 위해 사용되는 매우 유용한 기법이다. 본 연구에서는 픽셀 어긋남이 심화되는 2차원 홀로그래픽 채널 환경에서 데이터의 검출 성능을 향상시키기 위해서, 각 데이터 검출 영역의 문턱 값(threshold value)을 유전 알고리즘의 인구 집합(population set)의 해로 간주하여 비트 검출 영역을 적응적으로 선택하는 방법을 제안한다. 제안하는 기법의 성능을 평가하기 위해 픽셀 어긋남 현상이 심화된 4-ary 멀티레벨 입력의 홀로그래픽 채널 환경을 고려하고 모의실험을 수행하여 진화 연산의 세대수에 따른 비트오율 성능을 측정한다. 성능평가를 통해 기존의 비트 검출 기법과 비교함으로써 제안 기법의 우수성을 확인하였다.
자기 조직화 신경망 (SOM: Self-Organizing Map)은 자율 학습 신경망으로 사전 지식이 존재하지 않는 자료에 존재하는 구조적 관계성을 보전하는데 이용된다. 자기 조직화 신경망은 벡터 양자화, 조합 최적화, 패턴 인식과 같은 복잡한 문제 해결을 위한 연구에 많이 이용되어 왔다. 이 논문에서는 좀더 효율적인 유전 알고리즘을 얻기 위한 스키마 변환 도구로서 자기 조직화 신경망을 이용하는 새로운 사용법에 대해서 제안한다. 즉, 각 자식해는 탐색 공간에서 좀더 바람직한 모양을 가지는 동질의 인공 신경망으로 변환된다. 이 변환으로 인해 강한 상위(epistasis)를 가지는 유전자들은 염색체 상에서 서로 인접하게 되는 것이다. 실험 결과는 기존 결과에 비해서 주목할만한 성능 개선이 있음을 보여준다.
양자역학 섭동이론과 유전자프로그래밍(GP) 기법을 접목시킴으로써 실세계(Real-world)에서 발생하는 카오스 시계열에 대하여 수학모델을 구축, 예측하기 위한 새로운 알고리즘을 개발하였다. 시계열 분석과 양자역학 파동방정식의 해를 구하는 섭동이론과의 절차적 유사성을 논하고, 이것을 GP로 구현하는 전형적 접근방안을 제시한다. 함수집합(Function Set)으로서 직교함수(Orthogonal Functions)를 이용하고 병렬 집단을 사용하는 GP를 이용하여 원 시계열에 대한 초기 수학모델을 구하고, 원 시계열 데이터로부터 모델의 평가값을 뺀 나머지로 구성되는 잔여 시계열에 대하여 다시 GP를 적용하는 과정을 일정한 종료조건이 충족될 때가지 반복함으로써 실세계 카오스 시계열에 대한 정확성 높은 수학모델을 구축하는데 성공하였다. 타 방법론과의 비교와 향후 해결과제에 대하여도 소개한다.
본 논문에서는 퍼지 벌레 검색과 최소-최대 군집화 알고리즘에 기반한 영상 영역화 기법을 제안한다. 전체 영상에서 에지 정보는 픽셀들의 공간 관계를 포함하게 되며, 이를 위해 목적 함수들의 인자를 조정하여 퍼지 벌레의 행동을 정의하며, 에지 정보를 검사하는 방법으로 퍼지 벌레값과 최소-최대 노드를 이용한다. 에지 추출을 사용하는 현재의 영역화 방법들은 수학적 모델에 기반한 매스크 정보를 필요로 하며, 매스크 연산으로 인하여 수행 시간도 많이 걸리게 된다. 반면에, 제안하는 알고리즘은 퍼지 벌레의 검색에 따라 단일 연산을 수행하게 된다. 제안하는 알고리즘에서 필요한 범위의 크기를 스스로 결정하고 빠르고 강력한 계산을 수행하기 위해 최적해를 찾는 유전 알고리즘을 도입하고자 한다. 추가적으로, 영상의 그레이-히스토그램에서 퍼지 검색과 군집화를 수행하기 위해 유전 알고리즘을 사용하는 유전 퍼지 벌레 검색과 유전 최소-최대 군집화가 제안된다. 시뮬레이션 결과는 제안된 알고리즘이 히스토그램을 사용하여 적응적으로 양자화되며, 계산 시간과 메모리를 적게 요구하는 단일 검색 방법을 수행한다는 것을 보여준다.
In this paper, we present parameter optimization technique for GaAs/AlGaAs multiple quantum well avalanche photodiodes used for image capture mechanism in high-definition system. Even under flawless environment in semiconductor manufacturing process, random variation in process parameters can bring the fluctuation to device performance. The precise modeling for this variation is thus required for accurate prediction of device performance. The precise modeling for this variation is thus required for accurate prediction of device performance. This paper will first use experimental design and neural networks to model the nonlinear relationship between device process parameters and device performance parameters. The derived model was then put into genetic algorithms to acquire optimized device process parameters. From the optimized technique, we can predict device performance before high-volume manufacturign, and also increase production efficiency.
영상처리를 이용한 영상간의 유사도 비교 기법은 영상의 검색 및 영상의 자동 인식 등을 위한 연구로 최근 각광받고 있다. 최근 영상 처리 기법은 화소의 질적 향상 및 처리시간 최적화, 효율적인 특정 요소의 추출 등 다양한 방법으로 시도되고 있다. 특히, 영상의 유사도 비교는 유사 영상 검색과 같은 경우에 많이 쓰인다. 영상의 유사도를 비교하기 위한 기법으로는 영상 데이터의 특징에 따라 대상 영역을 여러 영역으로 나누는 영역분할 기법과 군집화, 퍼지, 유전자 알고리즘 등이 있다. 본 논문에서는 영상을 HSV 색공간으로 변환한 후 색상 값에 대하여 전역 정렬 기법을 사용하는 유사도 측정 방법을 제시한다. 전역 정렬 기법은 유전자 서열 비교 기법 중 하나로서 두 유전체의 유사도를 측정하는데 사용된다. 유사도 측정 효율을 높이기 위해 색상 값을 8단계로 양자화하여 영상의 서열을 생성하였다. 실험결과 제시한 방법을 영상 회전이나 대칭, 글자 삽입 등의 간단한 연산에 크게 영향을 받지 않는 것으로 드러났다.
FLC(퍼지 제어기 : Fuzzy Logic Controller)는 고전적 제어기보다 외란(disturbance)에 강하고 초기 치의 과도측성(overshoot)이 우수하다. 그리고 미지의 프로세스(process)나 복잡한 시스템의 수학적인 모델링이 불가능한 경우에도 퍼지 추론에 의하여 적절한 제어량을 얻을 수 있다. 그러나 퍼지변수의 양자화 단계 크기에 의해 출력값이 항상 미세한 오차를 가지므로 목표치에 정확히 수럼하지 못한다.[1]. 이 미세한 오차를 제거하기 위한 여러 방법이 [2~4]있지만 본 논문에서는 FLC에 GA(유전알고리즘 : Genetic Algorithm)와 EP(진화프로그래밍 : Evolution programming)를 결합한 GA-FLC, EPFLC Hybrid 제어기를 제안한다. 이 Hybrid 제어기의 츨력 특성과 FLC의 출력 특성을 비교 분석하고, 이 Hybrid 제어기가 오차없이 목표치에 잘 수렴하는 것을 보이고자 한다. 또한 이 두 종류의 Hybrid제어기 수렴 속도 성능도 비교한다.
Today's rapid development in the computer and network technology makes the environment which enables the companies to consider their decisions on the wide point of view and enables the software vendors to make the software packages to help these decisions. To make these software packages, many algorithms should be developed. The production and distribution planning problem belongs to those problems that industry manufacturers daily face in organizing their overall production plan. However, this combinatorial optimization problem can not be solved optimally in a reasonable time when large instances are considered. This legitimates the search for heuristic techniques. As one of these heuristic techniques, genetic algorithm has been considered in many researches. A standard genetic algorithm is a problem solving method that apply the rules of reproduction, gene crossover, and mutation to these pseudo-organisms so those organisms can Pass beneficial and survival-enhancing traits to new generation. This standard genetic algorithm should not be applied to this problem directly because when we represent the chromosome of this problem, there may exist high epitasis between genes. So in this paper, we proposed the hybrid genetic algorithm which turns out to better result than standard genetic algorithms
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.