DOI QR코드

DOI QR Code

An Evolutionary Algorithm to the Threshold Detection Method for the M-ary Holographic Data Storage

M-ary 홀로그래픽 저장 장치의 적응적 문턱값 검출을 위한 진화 연산 기법

  • Kim, Sunho (School of Electronic Engineering, Soongsil University) ;
  • Lee, Jieun (School of Electronic Engineering, Soongsil University) ;
  • Im, Sungbin (School of Electronic Engineering, Soongsil University)
  • 김선호 (숭실대학교 정보통신공학과) ;
  • 이지은 (숭실대학교 정보통신공학과) ;
  • 임성빈 (숭실대학교 정보통신공학과)
  • Received : 2014.03.17
  • Accepted : 2014.04.30
  • Published : 2014.05.25

Abstract

In this paper, we introduce the adaptive threshold detection scheme based on an evolutionary arithmetic algorithm for the M-ary holographic data storage(HDS) system. The genetic algorithm is a particular class of evolutionary arithmetic based on the process of biological evolution, which is a very promising technique for optimization problem and estimation applications. In this study, to improve the detection performance that is degraded by the HDS channel environment and the pixel misalignment, the threshold value was assumed to be a population set of the evolutionary algorithm. The proposed method can find an appropriate population set of bit threshold, which minimizes bit error rate(BER) as increased generation. For performance evaluation, we consider severe misalignment effect in the 4-ary holographic data storage system. Furthermore, we measure the BER performance and compare the proposed methods with the conventional threshold detection scheme, which verifies the superiority of the proposed scheme.

본 논문에서는 M-ary 홀로그래픽 데이터 저장장치에 적용 가능한 진화 연산 알고리즘 기반 적응적 문턱치 검출 기법을 제안한다. 전통적으로 유전 알고리즘은 생명체의 유전자 진화과정에 근간하여 최적 혹은 준최적 문제와 데이터 추정을 위해 사용되는 매우 유용한 기법이다. 본 연구에서는 픽셀 어긋남이 심화되는 2차원 홀로그래픽 채널 환경에서 데이터의 검출 성능을 향상시키기 위해서, 각 데이터 검출 영역의 문턱 값(threshold value)을 유전 알고리즘의 인구 집합(population set)의 해로 간주하여 비트 검출 영역을 적응적으로 선택하는 방법을 제안한다. 제안하는 기법의 성능을 평가하기 위해 픽셀 어긋남 현상이 심화된 4-ary 멀티레벨 입력의 홀로그래픽 채널 환경을 고려하고 모의실험을 수행하여 진화 연산의 세대수에 따른 비트오율 성능을 측정한다. 성능평가를 통해 기존의 비트 검출 기법과 비교함으로써 제안 기법의 우수성을 확인하였다.

Keywords

References

  1. L. Hesselink, S.S. Orlov, and M.C. Bashaw, "Holographic data storage systems," Proc. IEEE, vol. 92, no. 8, pp. 1231-1280, Aug. 2004. https://doi.org/10.1109/JPROC.2004.831212
  2. U. Wachsmann, R. F. H. Fischer, and J.B. Huber, "Multilevel Codes: Theoretical Concepts and Practical Design Rules," IEEE. Trans. Inform. Theory, vol.45, pp. 1361-1391, Jul. 1999. https://doi.org/10.1109/18.771140
  3. S. G. Srinivasa, O. Momtahan, A. Karbaschi, S. W. Mclaughlin, A. Adibi, and F. Fekri, "M-ary, Binary, and Space-Volume Multiplexing Trade-offs for Holographic Channel," GLOBECOM '06. IEEE, pp.1-5, 2006.
  4. K. M. Chugg, X. Chen and M. A. Niefelf, "Two-dimensional equalization in coherent and incoherent page oriented optical memory," J. Opt. Soc. Amer. A, vol. 16, pp. 549-562, 1999. https://doi.org/10.1364/JOSAA.16.000549
  5. J. Kim, J. Lee, T. Park and S. Im, "Expectation-maximization based adaptive threshold detection algorithm for multi-level holographic data storage," Jpn. J. Appl. Phys., vol.50, no. 9, pp. 09MB01-3, 2011. https://doi.org/10.7567/JJAP.50.09MB01
  6. Sunho Kim, and Sungbin Im, "Application of an Iterative 2D Equalizer to Holographic Data Storage Systems," Journal of IEEK (TC), Vol 49, No 7, 2012.
  7. D. E. Goldberg, Genetic algorithms in search, optimization, and machine learning, Ed : Addison-Wesley, 1989.
  8. A. Malossini, E. Blanzieri and T. Calarco, "Quantum Genetic Optimization," IEEE Trans. on Evolutionary Computation, vol. 12, pp. 231-241, 2008. https://doi.org/10.1109/TEVC.2007.905006
  9. J. Guo, L. Sun and R. Wang, "An Improved Quantum Genetic Algorithm," IEEE Conf. on Genetic and Evolutionary Computing, pp. 14-18, 2009.
  10. W. Zhang and Y. Qiu, "The research of the feature selection method based on the ECE and quantum genetic algorithm," IEEE 2010 international conf. on ICACTE, pp. V6-193-196, 2010.
  11. S. Zhang and W. Jiang, "A novel quantum genetic algorithm and its application," IEEE 2012 Eighth International Conf. on Natural Computation (ICNC), pp. 613-617, 2012.