• Title/Summary/Keyword: 진화 알고리즘

Search Result 244, Processing Time 0.379 seconds

Differential Evolution Algorithm using Parallel Processing Structure (병렬 처리 구조를 이용한 차분 진화 알고리즘)

  • Lim, Dong-Hyun;Lee, Jong-Hyun;Ahn, Chang-Wook
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.323-327
    • /
    • 2010
  • 본 논문은 차분 진화 알고리즘의 최적해 탐색 능력을 향상시키기 위해 병렬 처리기법을 적용한 기법을 제안한다. 이를 위해서 기존의 개체군들을 5개의 그룹으로 나누어서 독립적으로 최적화 과정을 하도록 하여 일정한 확률에 의해서 각 그룹이 다른 그룹의 Best individual들을 변이 과정에서 참조하도록 하였다. 이러한 방식을 통해서 기존 차분 진화 알고리즘이 가지고 있는 지역해 수렴 문제를 해결하는 할 수 있도록 하였다. 실험을 통해서 제안된 차분 진화 알고리즘(P-DE)의 탐색 능력을 비교 및 분석 하였다. 실험 결과 제안된 차분 진화 알고리즘(P-DE)이 지역해 수렴 문제를 충분히 해결함으로써 기존의 알고리즘에 비해서 우수한 성능을 보이는 것을 확인 하였다.

  • PDF

Differential Evolution using Random Key Representation for Travelling Salesman Problems (외판원 문제를 위한 난수 표현법을 이용한 차분진화 알고리즘)

  • Lee, Sangwook
    • Proceedings of the Korea Contents Association Conference
    • /
    • /
    • pp.63-64
    • /
    • 2012
  • 차분진화 알고리즘은 Storn 과 Price에 의해 제안된 메타휴리스틱 알고리즘이다. 본 논문에서는 외판원 문제를 해결하기 위한 차분진화 알고리즘을 소개한다. 차분진화 알고리즘은 실수 문제를 위한 알고리즘이므로 외판원 문제를 해결하기 위해 난수 키 표현법을 적용한다. OR Library의 표준 외판원 문제에 적용한 결과 제안한 알고리즘은 외판원 문제 해결에 가능성이 있음을 보여주었다.

  • PDF

Active Learning of Mobile Robot Path Planning Using Evolutionary Algorithms (진화 알고리즘을 이용한 이동로봇 경로 계획의 능동적 학습)

  • 김성훈;장병탁
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • /
    • pp.263-266
    • /
    • 1997
  • 로봇 축구 경기를 위해서는 경기장의 임의의 시작점에서 목표점으로 장애물을 피해 갈 수 있는 능력이 필요하다. 이러한 경로 계획을 학습하기 위해서 다양한 상황을 모두 고려할 경우 학습량이 급격히 증가한다. 그러나 많은 실제적인 학습 문제에 있어서는 가능한 모든 학습 데이터를 사용하지 않고도 원하는 학습 효과를 가져올 수 있음이 알려져 있으며, 이러한 경우 데이터를 스스로 선별하여 학습하는 능동적 학습 방법이 효과적이다. 본 논문에서는 진화 알고리즘을 사용하여 실시간에 경로 계획을 하기 위한 새로운 능동적 학습 방법을 제시한다. 제안되는 방법은 두 개의 진화 알고리즘으로 구성되는데 하나는 주어진 시작점-목표점간의 최적 경로를 찾는데 사용되고 또 다른 하나의 진화 알고리즘은 유용한 시작점-목표점들의 쌍을 탐색하는데 사용된다. 이 방법은 계산 시간의 여유가 있을 때 다양한 문제를 스스로 제시하고 해결하는 법을 학습해 놓고 후에 실제 문제가 주어질 때 기존의 문제와 가장 유사한 문제를 찾아 실시간에 해결함으로써 기존의 진화 알고리즘에 의한 경로 계획법들이 갖는 실시간성에서의 단점을 개선할 수 있다. 실험을 통하\ulcorner 제안된 두 가지 진화 알고리즘의 성능을 실험적으로 검토한다.

  • PDF

Differential Evolution Algorithm based on Random Key Representation for Traveling Salesman Problems (외판원 문제를 위한 난수 키 표현법 기반 차분 진화 알고리즘)

  • Lee, Sangwook
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.11
    • /
    • pp.636-643
    • /
    • 2020
  • The differential evolution algorithm is one of the meta-heuristic techniques developed to solve the real optimization problem, which is a continuous problem space. In this study, in order to use the differential evolution algorithm to solve the traveling salesman problem, which is a discontinuous problem space, a random key representation method is applied to the differential evolution algorithm. The differential evolution algorithm searches for a real space and uses the order of the indexes of the solutions sorted in ascending order as the order of city visits to find the fitness. As a result of experimentation by applying it to the benchmark traveling salesman problems which are provided in TSPLIB, it was confirmed that the proposed differential evolution algorithm based on the random key representation method has the potential to solve the traveling salesman problems.

A Bayesian Evolutionary Algorithm with Multiple Markov Chains (다중 마르코프 체인의 베이지안 진화 알고리즘)

  • 이시은;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.322-324
    • /
    • 2002
  • 진화 연산의 확률적 모델인 베이지안 진화 알고리즘의 수렴 특성에 대한 이전 연구를 통해 개체군 크기가 1인 경우에 대해 베이지안 진화 알고리즘을 단일 테인 MCMC로 변환하여 수렴 특성을 보였다. 본 논문에서는 개체군 크기가 1로 제한되지 않는 경우 베이지안 진화알고리즘을 다중 체 인의 개체군으로 생각하여 수렴 특성을 살펴본다.

  • PDF

인공 진화에 의한 학습 및 최적화

  • 장병탁
    • ICROS
    • /
    • v.1 no.3
    • /
    • pp.52-61
    • /
    • 1995
  • 본 고에서는 진화계산의 동작 원리와 이론적 기반에 대해 살펴봄으로써 그 원리를 이해하고 앞으로의 응용가능성에 대하여 고찰하고자 한다. 이를 위해 먼저 대부분의 진화 알고리즘에 공통되는 기본 구성 요소와 계산절차를 기술하고, 진화 알고리즘을 이용하여 특정문제를 풀고자 할 때 고려할 사항에 대하여 기술한다. 다음에는 간단한 응용 문제를 예로 들어 이 문제에 진화 알고리즘을 적용하고 그 동작과정을 추적함으로써 실제 적용에 있어서의 여러 가지 결정사항과 그 수행과정을 구체적으로 살펴본다. 또한 진화 알고리즘의 이론적 배경을 이해하기 위해 스키마와 빌딩 블록 그리고 스키마 정리에 대해서 알아본다. 마지막으로 진화계산방식과 다른 지능적 계산 기술들과의 융합 가능성의 예로서, 유전 프로그래밍에 의한 신경망 구조의 설계 및 학습에 대하여 살펴본다.

  • PDF

Comparing between particle swarm optimization and differential evolution in bargaining game (교섭게임에서 입자군집최적화와 차분진화알고리즘 비교)

  • Lee, Sangwook
    • Proceedings of the Korea Contents Association Conference
    • /
    • /
    • pp.55-56
    • /
    • 2015
  • 근래에 게임이론 분야에서 진화계산 기법을 사용한 분석은 중요한 이슈이다. 본 논문에서는 교섭게임에서 입자군집최적화와 차분진화알고리즘 간의 공진화 과정을 관찰하고 상호 경쟁에서 얻는 이득을 비교하여 두 알고리즘의 성능을 분석한다. 실험결과 입자군집최적화가 차분진화알고리즘에 비해 교섭게임에서 더 우수한 성능을 보임을 확인하였다.

  • PDF

Design of Nearest Prototype Classifier by using Differential Evolutionary Algorithm (차분진화 알고리즘을 이용한 Nearest Prototype Classifier 설계)

  • Roh, Seok-Beom;Ahn, Tae-Chon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.487-492
    • /
    • 2011
  • In this paper, we proposed a new design methodology to improve the classification performance of the Nearest Prototype Classifier which is one of the simplest classification algorithm. To optimize the position vectors of the prototypes in the nearest prototype classifier, we use the differential evolutionary algorithm. The optimized position vectors of the prototypes result in the improvement of the classification performance. The new method to determine the class labels of the prototypes, which are defined by the differential evolutionary algorithm, is proposed. In addition, the experimental application covers a comparative analysis including several previously commonly encountered methods.

Evolutionary Multi-Objective Optimization Algorithms for Converging Global Optimal Solution (전역 최적해 수렴을 위한 다목적 최적화 진화알고리즘)

  • Jang, Su-Hyun;Yoon, Byung-Joo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.401-404
    • /
    • 2004
  • 진화 알고리즘은 여러 개의 상충하는 목적을 갖는 다목적 최적화 문제를 해결하기에 적합한 방법이다. 특히, 파레토 지배관계에 기초하여 개체의 적합도를 평가하는 파레토 기반 진화알고리즘들은 그 성능에 있어서 우수한 평가를 받고 있다. 최근의 파레토 기반 진화알고리즘들은 전체 파레토 프론트에 균일하게 분포하는 해집합의 생성을 위해 개체들의 밀도를 개체의 적합도를 평가하기 위한 하나의 요소로 사용하고 있다. 그러나 밀도의 역할은 전체 진화과정에서 중요한 요소가 되기보다는 파레토 프론트에 어느 정도 수렴된 후, 개체의 균일 분포를 만들기 위해 사용된다. 본 논문에서 우리는 파레토 지배 순위와 밀도에 대한 적응적가중치를 이용한 다목적 최적화 진화알고리즘을 제안한다. 제안한 알고리즘은 진화 개체의 적합도를 평가하기위해 파레토 순위와 밀도에 대한 적응적 가중치를 적용하여 전체 진화과정에서 파레토 순위와 밀도가 전체 진화 개체집합의 상태를 고려하여 영향을 미치도록 하였다. 제안한 방법을 많은 지역해들을 포함하는 ZDT4문제에 적용한 결과 비교적 우수한 수렴 결과를 보였다.

  • PDF

SMGA: A New Coevolutionary Algorithm based on Species Splitting and Merging (분할과 병합을 이용한 새로운 공진화 알고리즘 - SMGA)

  • 박성진;김명원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.307-309
    • /
    • 2000
  • 진화 알고리즘은 현재까지 다양한 최적화 문제들에 사용되어 왔고, 또한 이러한 최적화 문제들은 효율적으로 해결하기 위하여 많은 진화 알고리즘이 개발되어 왔다. 그러나 이러한 진화 알고리즘들의 공통적인 문제점은 탐색공간의 확대에 대하여 전반적으로 탐색시간이 오래 걸린다는 것이다. 실제로 최적화 해야 할 변수의 증가에 따라 탐색 차원이 증가하므로 탐색 시간도 기하급수적으로 늘어난다. 따라서 최근의 진화 알고리즘에 대한 연구는 탐색공간의 축소나, 진화 속도의 향상에 초점이 맞추어져 있었고, 이러한 경향에 따라 많은 연구성과가 있었다. Potter와 Dejong의 협력 공진화와, Weicker의 적응적 공진화가 바로 그것이다. 그러나 이 방법들도 최적화 해야 할 변수들이 서로 강한 의존성을 가지고 있는 경우나, 대부분의 변수가 서로 의존성을 가지고 있는 경우에는 그다지 좋은 결과를 보이지 못하는 문제점을 가지고 있다. 본 논문에서는 이러한 연구들을 기반으로 하여 각 방법의 단점들을 보완함으로써 효율을 향상시킨 새로운 진화 알고리즘을 제안한다.

  • PDF