• Title/Summary/Keyword: 양액 특성

Search Result 118, Processing Time 0.029 seconds

Growth and Runner Production of 'Maehyang' Strawberry as Affected by Application Method and Concentration of Cytokinin (딸기 '매향'의 사이토키닌 처리방법과 농도에 따른 생육과 런너 생산)

  • Kim, Young Jin;Kim, Hye Min;Kim, Hyun Min;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.26 no.2
    • /
    • pp.72-77
    • /
    • 2017
  • This study was conducted to examine the effect by application method and concentration of plant growth regulator (PGR) on the growth and runner production of strawberry (Fragaria ${\times}$ ananassa Duch. cv. Maehyang) in a velno-type greenhouse. The seedlings of strawberry were transplanted in pot ($64{\times}27{\times}18cm$) filled with commercial mixed medium (Tosilee) on February 22nd, 2016. The 6-benzylaminopurine (6-BAP) was applied with foliar spray or drench, respectively as 900, 1,200 or $1,500mg{\cdot}L^{-1}$ (50 mL per plant) at 3 weeks after transplanting. Nutrient solution was sufficiently supplied by the drip irrigation as EC $0.65dS{\cdot}m^{-1}$ for rooting during 7 days. After rooting, the 450 mL nutrient solution supplied per pot twice a day (10 min). Plant height and crown diameter of 'Maehyang' mother plant appeared no significantly difference. The other growth characteristics, such as root length, number of primary roots, leaf length, leaf width, leaf area and fresh and dry weights of the shoot or root, were significantly the greatest in the control. And, the SPAD value of strawberry was the highest as 44.2 in the drench with $900mg{\cdot}L^{-1}$. The foiler spray was more effective in runner production than drench, and the number of runners appeared high values at the 900 and $1,500mg{\cdot}L^{-1}$. Whereas, the number of strawberry plantlets was effective in the drench. The results indicate that both growth and the number of runners of strawberry plant were the best achieved by foliar spray application at the $900mg{\cdot}L^{-1}$.

Estimation of Soil Cooling Load in the Root Zone of Greenhouses (온실내 근권부의 지중냉각부하 추정)

  • 남상운
    • Journal of Bio-Environment Control
    • /
    • v.11 no.4
    • /
    • pp.151-156
    • /
    • 2002
  • Root zone cooling, such as soil or nutrient solution cooling, is less expensive than air cooling in the whole greenhouse and is effective in promoting root activity, improving water absorption rate, decreasing plant temperature, and reducing high temperature stress. The heat transfer of a soil cooling system in a plastic greenhouse was analyzed to estimate cooling loads. The thermal conductivity of soil, calculated by measured heat fluxes in the soil, showed the positive correlation with the soil water content. It ranged from 0.83 to 0.96 W.m$^{[-10]}$ .$^{\circ}C$$^{[-10]}$ at 19 to 36% of soil water contents. As the indoor solar radiation increased, the temperature difference between soil surface and indoor air linearly increased. At 300 to 800 W.m$^{-2}$ of indoor solar radiations, the soil surface temperature rose from 3.5 to 7.$0^{\circ}C$ in bare ground and 1.0 to 2.5$^{\circ}C$ under the canopy. Cooling loads in the root zone soil were estimated with solar radiation, soil water content, and temperature difference between air and soil. At 300 to 600 W.m$^{-2}$ of indoor solar radiations and 20 to 40% of soil water contents,46 to 59 W.m$^{-2}$ of soil cooling loads are required to maintain the temperature difference of 1$0^{\circ}C$ between indoor air and root zone soil.

Growth and Quality of Two Melon Cultivars in Hydroponics Affected by Mixing Ratio of Coir Substrate and Different Irrigation Amount on Spring Season (멜론 봄 재배 시 코이어 배지경에서 배지 혼합 비율과 급액량에 따른 생육 및 품질)

  • Choi, Su hyun;Lim, Mi Yeong;Choi, Gyeong Lee;Kim, So Hui;Jeong, Ho Jeong
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.376-387
    • /
    • 2019
  • Melons are mostly grown in soil, but it is susceptible to damage due to injury by continuous cropping such as Fusarium wilt and root rot. Hydroponic cultivation system can overcome the disadvantages of soil cultivation with precise nutrition management and a clean environment. When using the coir substrate, the most environmentally friendly organic substrate used for hydroponics, it is analyzed how the growth and fruit quality of the melon depends on the ratio of chips and dust and the amount of irrigation. The purpose of this study was to provide the basic data of melon hydroponics when cultivated in spring. The two types of the coir substrates used in the experiments were chip and dust ratios of 3 :7 and 5 : 5 respectively. The substrate with high dust ratios had excellent physical characteristics, such as container capacity and total porosity, and the drainage EC level showed a high value of $3.0-6.8dS{\cdot}m^{-1}$. When the amount of irrigation is provided based on the drainage rate, the group provided the nutrient solution on the basis of 10% drainage supplied 91 L per plant, which was reduced by about 30% compared to the group with the highest water supply. In addition, the total drainage showed less than 10 L per plant with a minimum water supply and was reduced by 30 - 70% in substrate with a high dust rates. In substrate with high water supply and high dust ratio, leaf growth and fruit enlargement were good, and the soluble solids content varies greatly from cultivar to cultivar. If you provided the amount of irrigation based on 10% drainage rate, the fruit weight will be decreased, but the amount of irrigation can be reduced. Therefore, it is considered that managing the water & nutrient properly taking into account the characteristics of coir substrate and cultivar can produce melon of uniform quality using hydroponics.

A study on drainage characteristics and load amount evaluation by crop type in a hydroponic cultivation facility of horticultural complex (수경재배 시설원예단지 작물 유형별 배액 특성 및 부하량 평가 연구)

  • Jin, Yujeong;Kang, Taegyoung;Lim, Ryugab;Kim, Hyunwoo;Kang, Donghyeon;Park, Minjung;Son, Jinkwan
    • Journal of Wetlands Research
    • /
    • v.23 no.4
    • /
    • pp.352-363
    • /
    • 2021
  • The purpose of this study was to evaluate the load of nutrients contained in the drainage discharged from the facility horticultural complex and to use them for re-use of fluids and design for introduction of water treatment plants. Representative hydroponic cultivation crops were selected as tomato, paprika, cucumber, and strawberry, and the total number of samples analyzed for water quality was 80. As a result of the analysis, since various fertilizer components such as N, P, K+, Na+, Mg2+, Ca2+, Si4+, HCO3-, Cl-, S2-, Fe, Mn, Cu, Zn, Mo and B are contained at very high concentrations in the drainage, the need for water treatment was confirmed. Through statistical analysis, it was analyzed that the drainage concentration of strawberries was lower than that of tomatoes, paprika, and cucumbers. In the case of tomatoes, these essential ion concentrations are the highest, so it was confirmed that they are subject to valuable resources in terms of reuse of fertilizers. The load of N and P of the drainage discharged from the facility horticultural complex 1m2 was analyzed. For N, the daily processing capacity of 4.0 kg of tomatoes, 3.3 kg of paprika, 3.0 kg of cucumbers, and 1.5 kg of strawberries was calculated based on 1 ha. It was suggested that the P concentration needs a scale and capacity that can handle 0.5 kg of tomatoes, 0.6 kg of paprika, 0.4 kg of cucumber, and 0.2 kg of strawberries per day. Through this study, the amount of nitrogen and phosphorus contained in the drainage discharged from the greenhouse of each crop was evaluated to analyze the economy. In addition, it was expected to be used as basic data that can be used to calculate the treatment capacity to be reflected when introducing water treatment facilities in facility horticultural complexes for sustainable agriculture.

Effect of Difference in Irrigation Amount on Growth and Yield of Tomato Plant in Long-term Cultivation of Hydroponics (장기 수경재배에서 급액량의 차이가 토마토 생육과 수량 특성에 미치는 영향)

  • Choi, Gyeong Lee;Lim, Mi Young;Kim, So Hui;Rho, Mi Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.444-451
    • /
    • 2022
  • Recently, long-term cultivation is becoming more common with the increase in tomato hydroponics. In hydroponics, it is very important to supply an appropriate nutrient solution considering the nutrient and moisture requirements of crops, in terms of productivity, resource use, and environmental conservation. Since seasonal environmental changes appear severely in long-term cultivation, it is so critical to manage irrigation control considering these changes. Therefore, this study was carried out to investigate the effect of irrigation volume on growth and yield in tomato long-term cultivation using coir substrate. The irrigation volume was adjusted at 4 levels (high, medium high, medium low and low) by different irrigation frequency. Irrigation scheduling (frequency) was controlled based on solar radiation which measured by radiation sensor installed outside the greenhouse and performed whenever accumulated solar radiation energy reached set value. Set value of integrated solar radiation was changed by the growing season. The results revealed that the higher irrigation volume caused the higher drainage rate, which could prevent the EC of drainage from rising excessively. As the cultivation period elapsed, the EC of the drainage increased. And the lower irrigation volume supplied, the more the increase in EC of the drainage. Plant length was shorter in the low irrigation volume treatment compared to the other treatments. But irrigation volume did not affect the number of nodes and fruit clusters. The number of fruit settings was not significantly affected by the irrigation volume in general, but high irrigation volume significantly decreased fruit setting and yield of the 12-15th cluster developed during low temperature period. Blossom-end rot occurred early with a high incidence rate in the low irrigation volume treatment group. The highest weight fruits was obtained from the high irrigation treatment group, while the medium high treatment group had the highest total yield. As a result of the experiment, it could be confirmed the effect of irrigation amount on the nutrient and moisture stabilization in the root zone and yield, in addition to the importance of proper irrigation control when cultivating tomato plants hydroponically using coir substrate. Therefore, it is necessary to continue the research on this topic, as it is judged that the precise irrigation control algorithm based on root zone-information applied to the integrated environmental control system, will contribute to the improvement of crop productivity as well as the development of hydroponics control techniques.

Development of Summer Leaf Vegetable Crop Energy Model for Rooftop Greenhouse (옥상온실에서의 여름철 엽채류 작물에너지 교환 모델 개발)

  • Cho, Jeong-Hwa;Lee, In-Bok;Lee, Sang-Yeon;Kim, Jun-Gyu;Decano, Cristina;Choi, Young-Bae;Lee, Min-Hyung;Jeong, Hyo-Hyeog;Jeong, Deuk-Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.246-254
    • /
    • 2022
  • Domestic facility agriculture grows rapidly, such as modernization and large-scale. And the production scale increases significantly compared to the area, accounting for about 60% of the total agricultural production. Greenhouses require energy input to create an appropriate environment for stable mass production throughout the year, but the energy load per unit area is large because of low insulation properties. Through the rooftop greenhouse, one of the types of urban agriculture, energy that is not discarded or utilized in the building can be used in the rooftop greenhouse. And the cooling and heating load of the building can be reduced through optimal greenhouse operation. Dynamic energy analysis for various environmental conditions should be preceded for efficient operation of rooftop greenhouses, and about 40% of the solar energy introduced in the greenhouse is energy exchange for crops, so it should be considered essential. A major analysis is needed for each sensible heat and latent heat load by leaf surface temperature and evapotranspiration, dominant in energy flow. Therefore, an experiment was conducted in a rooftop greenhouse located at the Korea Institute of Machinery and Materials to analyze the energy exchange according to the growth stage of crops. A micro-meteorological and nutrient solution environment and growth survey were conducted around the crops. Finally, a regression model of leaf temperature and evapotranspiration according to the growth stage of leafy vegetables was developed, and using this, the dynamic energy model of the rooftop greenhouse considering heat transfer between crops and the surrounding air can be analyzed.

Changes of Plant Growth and Nutrient Concentrations of the Drainage According to Drainage Reuse and Substrate Type in Sweet Pepper Hydroponics (파프리카 수경재배 시 배액 재사용과 배지 종류에 따른 생육 및 배액 내 이온 농도 변화)

  • Lim, Mi Young;Jeong, Eun Seol;Roh, Mi Young;Choi, Gyeong Lee;Kim, So Hui;Lee, Choung Keun
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.476-484
    • /
    • 2022
  • This study was conducted to investigate the effect of closed cultivation and open cultivation method and substrate type on the nutrient ion change pattern and growth of sweet pepper (Capsicum annuum L.) 'Scirocco' according to the reuse of drainage in hydroponics. The sowing, transplanting, and application of the closed and open cultivation method were carried out on August 19 and September 16, and October 21, 2021, respectively. As a result of the analysis of nutrients in the drainage, Na+ and Cl- are representative ions that crops do not absorb properly, and as the growth progresses, they are accumulated in the closed method. In addition, since the content of NH4-N in the drainage is significantly lower than that of NO3-N, it is thought that NH4-N is preferentially absorbed rather than NO3-N due to the ion selectivity of sweet pepper. The growth and fruit characteristics of sweet pepper did not differ significantly between treatments according to the drainage reuse and the type of substrate. In conclusion, if you take care of poor fruiting due to the weakening of power after the middle period in hydroponic cultivation of sweet pepper according to the cultivation method of closed and open, and the substrate type of coir and rock wool, the difference between treatments is not large, so the sweet pepper can be produced by selecting the cultivation methods and substrate types suitable for the conditions of grower. However, as interest in environmental pollution has recently increased, it is judged that there is no need to worry about a decrease in quantity or quality, even if a closed cultivation method is adopted under the assumption that pathogen infection due to drainage reuse is well managed. It is expected that if coir is applied instead of rock wool, which causes a problem of disposal, it will further contribute to the reduction of environmental pollution.

A Study on the Evaluation of Fertilizer Loss in the Drainage(Waste) Water of Hydroponic Cultivation, Korea (수경재배 유출 배액(폐양액)의 비료 손실량 평가 연구)

  • Jinkwan Son;Sungwook Yun;Jinkyung Kwon;Jihoon Shin;Donghyeon Kang;Minjung Park;Ryugap Lim
    • Journal of Wetlands Research
    • /
    • v.25 no.1
    • /
    • pp.35-47
    • /
    • 2023
  • Korean facility horticulture and hydroponic cultivation methods increase, requiring the management of waste water generated. In this study, the amount of fertilizer contained in the discharged waste liquid was determined. By evaluating this as a price, it was suggested to reduce water treatment costs and recycle fertilizer components. It was evaluated based on the results of major water quality analysis of waste liquid by crop, such as tomatoes, paprika, cucumbers, and strawberries, and in the case of P component, it was analyzed by converting it to the amount of phosphoric acid (P2O5). The amount of nitrogen (N) can be calculated by discharging 1,145.90kg·ha-1 of tomatoes, 920.43kg·ha-1 of paprika, 804.16kg·ha-1 of cucumbers, 405.83kg·ha-1 of strawberries, and the fertilizer content of P2O5 is 830.65kg·ha-1 of paprika, 622.32kg·ha-1 of tomatoes, 477.67kg·ha-1 of cucumbers. In addition, trace elements such as potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), and manganese (Mn) were also analyzed to be emitted. The price per kg of each item calculated by averaging the price of fertilizer sold on the market can be evaluated as KRW, N 860.7, P 2,378.2, K 2,121.7, Ca 981.2, Mg 1,036.3, Fe 126,076.9, Mn 62,322.1, Zn 15,825.0, Cu 31,362.0, B 4,238.0, Mo 149,041.7. The annual fertilizer loss amount for each crop was calculated by comprehensively considering the price per kg calculated based on the market price of fertilizer, the concentration of waste by crop analyzed earlier, and the average annual emission of hydroponic cultivation. As a result of the analysis, the average of the four hydroponic crops was 5,475,361.1 won in fertilizer ingredients, with tomatoes valued at 6,995,622.3 won, paprika valued at 7,384,923.8 won, cucumbers valued at 5,091,607.9 won, and strawberries valued at 2,429,290.6 won. It was expected that if hydroponic drainage is managed through self-treatment or threshing before discharge rather than by leaking it into a river and treating it as a pollutant, it can be a valuable reusable fertilizer ingredient along with reducing water treatment costs.