• Title/Summary/Keyword: 양극재

Search Result 124, Processing Time 0.026 seconds

Mo 첨가 및 TT 열처리에 따른 합금 690의 부식 특성

  • 전유택;박용수;김영식
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.790-795
    • /
    • 1995
  • 합금 600의 대체 재료인 합금 690의 부식 저항성 향상을 위해 스테인리스강 등에서 내식성을 현저히 개선시켜 주는 합금 원소로 알려져 있는 Mo을 첨가하여 TT 열처리를 한 후 부식 특성과 TEM관찰을 행하여 미세 조직의 영향에 대하여 고찰하고자 하였다. TT 처리 시간이 길어짐에 따라 보다 많은 석출물들이 입계에 생성되었으며, Mo을 첨가함에 따라 입계에 탄화물 석출이 지연되었다. 양극 분극 시험, 침지시험, EPR 시험, Huey 시험 결과 소둔재에 비해 TT 처리재의 경우 내식성의 저하는 업었으며 오히려 개선되는 특성을 보였다. 또한 Mo의 함량이 증가함에 따라 탄화물 석출에 걸리는 시간이 길어져 3%의 Mo이 첨가된 합금 690 M2의 경우 예민화 현상은 15시간 TT 처리에서 관찰되었다. 응력 부식 균열 시험 결과 소둔재에 비해 TT 처리재의 응력 부식 균열 저항성이 증가하였으며 Mo의 함량이 증가함에 따라 대체적으로 응력 부식 균열 저항성도 개선되었다.

  • PDF

Current Control Device using TB-Equipped Circuit Equivalent Impedance Estimation and RF Relay (회로 등가임피던스 추정 및 RF 릴레이 장착한 TB를 이용한 방식전류제어장치)

  • Lee, Dong-Jun;Park, Seong-Mi;Park, Sung-Jun
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.358-359
    • /
    • 2019
  • 철교나 석유비축기지 탱크저판 및 각종 매설관로 등 대부분 철 성분 골조는 시간이 경과하면 주변의 환경에 따라 부식이 급격히 일어난다. 이러한 철강재가 부식되는 철강재가 시설물의 주요 구성물이 되고 있는 시설물의 수명을 크게 단축시키는 주요원인이 되고 있다. 이에 대한 대비책으로 방청도료나 코팅을 이용하는 방법과 달리, 전기적으로 전위차를 같게 하여 부식을 방지하는 전기방식법을 적용함에 있어 방식전류가 불균일한 경우 양극 소모가 불균일함에 따라 교체시기 문제를 극복하기 위해 회로 등가 임피던스 추정 및 RF 릴레이 장착한 TB를 이용한 방식전류제어장치를 개발하였다.

  • PDF

Investigation of Oxidation Methods of Organic Radical Polymer for Cathode Material in Lithium Ion Batteries (리튬이차전지 양극재인 유기라디칼 고분자의 산화법에 대한 연구)

  • Lee, Ilbok;Kim, Younghoon;Moon, Ji-Yeon;Lee, Chul Wee;Kim, Daeun;Ha, Kyoung-Su;Lee, Dong Hyun;Son, Hyungbin;Yoon, Songhun
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.827-831
    • /
    • 2014
  • An organic radical polymer (ORP) was prepared by radical polymerization and following oxidation into nitroxyl radical. Two different oxidation methods were employed and their radical concentrations were measured using electroparamagnetic resonance spectroscopy (EPR) and UV-visible absorption (UV-vis) spectroscopy. From these measurements, $H_2O_2-Na_2WO_4$ oxidation method exhibited a complete oxidation, which resulted in 97.6% spin concentration. Also, it was revealed that convenient and cheap UV-vis measurement was useful for preliminary radical concentration comparison. After applied as a cathode material in lithium ion batteries, ORP electrode showed a high initial capacity ($110mAh\;g^{-1}$), a good initial efficiency (96%), a very high rate performance (70% charging during 1.2 min) and stable cycle performance.

A Study on the Prior Leaching and Recovery of Lithium from the Spent LiFePO4 Cathode Powder Using Strong Organic Acid (강유기산을 이용한 폐LiFePO4 양극분말로부터 리튬의 선침출에 대한 연구)

  • Dae-Weon Kim;Soo-Hyun Ban;Hee-Seon Kim;Jun-Mo Ahn
    • Clean Technology
    • /
    • v.30 no.2
    • /
    • pp.105-112
    • /
    • 2024
  • Globally, the demand for electric vehicles has surged due to greenhouse gas regulations related to climate change, leading to an increase in the production of used batteries as a consequence of the battery life issue. This study aims to selectively leach and recover valuable metal lithium from the cathode material of spent LFP (LiFePO4) batteries among lithium-ion batteries. Generally, the use of inorganic acids results in the emission of toxic gases or the generation of large quantities of wastewater, causing environmental issues. To address this, research is being conducted to leach lithium using organic acids and other leaching agents. In this study, selective leaching was performed using the organic acid methane sulfonic acid (MSA, CH3SO3H). Experiments were conducted to determine the optimal conditions for selectively leaching lithium by varying the MSA concentration, pulp density, and hydrogen peroxide dosage. The results of this study showed that lithium was leached at approximately 100%, while iron and phosphorus components were leached at about 1%, verifying the leaching efficiency and the leaching rates of the main components under different variables.

Effect of Electrode Design on Electrochemical Performance of Highly Loaded LiCoO2 Positive Electrode in Lithium-ion Batteries (리튬이온 이차전지용 고로딩 LiCoO2 양극의 전극설계에 따른 전기화학적 성능연구)

  • Kim, Haebeen;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.2
    • /
    • pp.47-55
    • /
    • 2020
  • Highly loaded LiCoO2 positive electrodes are prepared to construct high-energy density lithium-ion batteries, their electrochemical performances are evaluated. For the standard electrode, a loading of about 2.2 mAh/㎠ is used, and for a high-loading electrode, an electrode is manufactured with a loading level of about 4.4 mAh/㎠. The content of carbon black as electronic conducting additive, and the porosity of the electrode are configured differently to compare the effects of electron conduction and ionic conduction in the highly loaded LiCoO2 electrode. It is expected that the electrochemical performance is improved as the amount of the carbon black increases, but the specific capacity of the LiCoO2 electrode containing 7.5 weight% carbon black is rather reduced. When the conductive material is excessively provided, an increase of electrode thickness by the low content of the LiCoO2 active material in the same loading level of the electrode is predicted as a cause of polarization growth. When the electrode porosity increases, the path of ionic transport can be extended, but the electron conduction within the electrode is disadvantageous because the contact between the active material and the carbon black particles decreases. As the electrode porosity is lowered through the sufficient calendaring of the electrode, the electrochemical performance is improved because of the better contact between particles in the electrode and the reduced electrode thickness. In the electrode design for the high-loading, it is very important to construct the path of electron conduction as well as the ion transfer and to reduce the electrode thickness.

Electrochemical Oxidation of Pigment Wastewater Using the Tube Type Electrolysis Module System with Recirculation (재순환방식 튜브형 전해모듈시스템을 이용한 안료폐수의 전기화학적 산화)

  • Jeong, Jong Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.8
    • /
    • pp.411-419
    • /
    • 2016
  • The objective of this study was to evaluate the application possibility of tube type electrolysis module system using recirculation process through removal organic matters and nitrogen in the pigment wastewater. The tube type electrolysis module consisted of a inner rod anode and an outer tube cathode. Material used for anode was titanium electroplated with $RuO_2$. Stainless steel was used for cathode. It was observed that the pollutant removal efficiency was increased according to the decrease of flowrate and increase of current density. When the retention time in tube type electrolysis module system was 180 min, chlorate concentration was 382.4~519.6 mg/L. The chlorate production was one of the major factors in electrochemical oxidation of tube type electrolysis module system using recirculation process used in this research. The pollutant removal efficiencies from the bench scale tube type electrolysis module system using recirculation operated under the electric charge of $4,500C/dm^2$ showed the $COD_{Mn}$ 89.6%, $COD_{Cr}$ 67.8%, T-N 96.8%, and Color 74.2%, respectively and energy consumption was $5.18kWh/m^3$.

Characteristics of treatment by Electrolysis with a change of electrodes in sanitary landfill leachate (전기분해법에서의 전극변화에 따른 위생매립장 침출수의 처리특성)

  • Huh, Mock;Kim, Byung-Hyun;Kim, Gwang-Jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.1
    • /
    • pp.68-74
    • /
    • 2002
  • This study was performed to examine the availability of electrolysis for removal of remaining biologically refractoty humus and residual color of leachate which is biologically pretreated in domestic waste matter sanitary landfill by recycling to landfill. The obtained results were as follows; 1) The electrolysis of leachate through covered bed represented that the removal efficiency of CODcr and color range from 70~80%, in color removal the only electrolysis for a treatment of leachate meet the critia of effluent. 2) The highest removal efficiency was represented in pH 7~8. 3) At anode used Al, Fe, Stainless the removal efficiency of CODcr and color was high in order of Fe, Al, stainless, in considering the settled ability of reaction product in economic or after electro coagulation the removal efficiency was highest when anode was the Fe electrode. 4) In this study conditions for removed both CODcr and Color ar the same time represented thar anode was used Fe, electrode-distance was 2cm and reaction time was 40min in 8volts.

  • PDF

An experimental study on the application of Cathodic Protection method applying Zn-Al metal spray on the RC structure (Zn-Al 금속용사 전기방식 공법의 콘크리트 구조물 적용성에 관한 실험적 연구)

  • Han, Man-Hae;Lee, Han-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.429-432
    • /
    • 2008
  • Cathodic Protection Method was introduced as a corrosion protection method of metals under the ground or sea. Since 1970, it was applied to corrosion protection method of reinforced concrete structures. After 1990, this method has been used around the world, and its usability was proved. But this method has some problems on the aspect of construction and economy. In order to solve these problems, Cathodic Protection Method by using high durable metal spray was developed. First, the specimen was covered with anodic materials (Zn, Al) by using metal spray. And a performance of corrosion protection was confirmed by measuring corrosion current of specimen. Through the result of experiment, it is possible to know that Cathodic Protection Method by using high metal spray is good to protect to corrosion on reinforced concrete structures.

  • PDF

Study on the Development of Hybrid NMP Recovery System for Recovering the Used NMP in Lithium Ion Battery Cathode Manufacturing Process (리튬이온전지 양극제조 공정에서 사용된 NMP를 회수하기 위한 하이브리드형 NMP 회수시스템 개발에 관한 연구)

  • Hwang, Soon Ho;Nam, Seung Beak;Kim, Dong-Kwon;Kim, Yang Jun;Kang, Sung Eun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.5
    • /
    • pp.289-296
    • /
    • 2016
  • The availability of NMP, a solvent used in the manufacturing process of cathode material for lithium ion battery, depends on importation, and the price remains high because of the monopoly of BASF and ISP. For these reasons, most Lithium ion battery manufacturers reuse NMP after recovering it from the exhaust air in the drying process. In Korea, absorption method is mainly used for recovering NMP from the absorption tower using the hydrophilicity of NMP. However, this system has a few disadvantages, such as low purity (80%) of the recovered NMP and 100% emission due to high water content of the treated gas. In this study, we develop a hybrid NMP recovery system by combining cooling condensation method with concentration method, by which it is possible to obtain an NMP recovery rate of 99.6%, and a high purity (96.1%) of the recovered NMP.

The investigations for feasible catalysts that are doped by electrochemical methods onto anodic TiO2 nanotubes and its applications (전기화학적 방법으로 TiO2 나노튜브에 도핑 가능한 촉매제와 그 응용에 관한 연구)

  • Yu, Hyeon-Seok;Choe, Jin-Seop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.99.1-99.1
    • /
    • 2017
  • $TiO_2$는 기계적, 화학적 안정성이 높아 가혹한 화학적 환경 또는 고온 운전 조건에서 훌륭한 내구성을 보여주어 산업적으로 일찍이 널리 이용되어 왔다. 예를 들어, 염소발생 (chlorine evolution reaction) 또는 산소발생반응은 (oxygen evolution reaction) 염소 또는 산소 라디칼에 전극이 지속적으로 노출되기에 강한 내부식성을 지닌 전극재가 요구되었고, 그 결과 $TiO_2$를 골조로 한 불용성전극 (dimensionally stable anode)이 개발되어 이용되고 있다. 그러나, $TiO_2$는 절연성이 높은 금속 산화물 재료이기 때문에 넓은 표면적 획득 및 촉매제 사용을 통해 소재의 단점을 극복해야만 한다. 넓은 반응 표면적 획득의 한 방법으로써 전기화학적 양극산화 (electrochemical anodization)를 통한 $TiO_2$ 나노튜브 제조법은 경제적이면서도 구조 제어도 간편한 방법이다. $TiO_2$ 나노튜브는 100nm 전후의 기공 크기를 가짐과 동시에 매우 높은 종횡비를 지니고 있어 넓은 반응 표면적 획득에 특히 유리하다. 그러나, 이 높은 종횡비는 촉매 도입을 어렵게 하는 저해요소가 되기도 한다. 이러한 문제를 해결하기 위하여 다양한 방법들이 연구되었으나 대부분이 번거롭거나 비싼 후단공정을 필요로 한다. 본 연구에서는 $TiO_2$ 나노튜브에 촉매를 도핑하기 위한 간단한 전기화학적 방법으로, 단일공정 양극산화법 (single-step anodization)과 전압충격법 (potential shock), 그리고 저전압충격법 (under potential shock)을 연구하였으며 이에 적용 가능한 촉매제의 종류를 소개한다. 또한, 촉매의 성질에 따른 응용분야와 그 성능평가 결과를 제시한다.

  • PDF