본 연구의 목적은 AI 카메라를 활용한 공공도서관 이용자의 공간이용행태를 분석하는 것이다. AI 카메라의 얼굴 인식 및 추적 기술을 활용하여 이용자의 성별과 연령을 식별하였고 초단위 영상 데이터를 수집·정제하여 이용자의 이동 동선을 파악하였다. 분석 결과, 여성 이용자가 남성 이용자보다 조금 더 많았고 연령대는 30대가 가장 많았다. 이용자 수는 화요일부터 금요일까지 증가하다가 토요일과 일요일에 감소하는 경향성을 보였고 오후 14시부터 15시 사이에 이용자 수가 가장 많은 것으로 나타났다. 이용자들은 1개 또는 2개 공간만을 주로 이용하였는데 이 때에는 안내데스크를 이용하거나 휴게공간을 이용하는 것으로 나타났다. 주제분야 서가를 이용하지 않는 경우가 주제분야 서가를 이용하는 경우보다 약 2배 정도 많았다. 이용자들은 철학(100), 종교(200), 사회과학(300), 순수과학(400), 기술과학(500), 문학(800) 분야들을 주로 이용하였고 이중 문학(800)은 다른 모든 주제분야들과의 연결성이 가장 높게 나타났다. 이용자들을 체류공간의 유사성에 따라 5개 군집으로 묶어본 결과, 군집 간에 이용 목적과 관심 주제분야에 차이가 있어 향후 도서관 서비스 기획에 중요한 단서가 될 수 있음을 확인하였다. 그리고 향후 도서관에서 AI 카메라를 활용한 이용자의 공간이용행태 분석이 활성화되기 위해서는 높은 비용 및 개인정보 보호 문제의 해결이 필요함을 제시하였다.
우크라이나-러시아 전을 통해 드론의 군사적 가치는 재평가되고 있으며, 북한은 '22년 말 대남 드론 도발을 통해 실제 검증까지 완료한 바 있다. 또한, 북한은 인공지능(AI) 기술의 드론 적용을 추진하고 있는 것으로 드러나 드론의 위협은 나날이 커지고 있다. 이에 우리 군은 드론작전사령부를 창설하고 다양한 드론 대응 체계를 도입하는 등 대 드론 체계 구축을 도모하고 있지만, 전력증강 노력이 타격체계 위주로 편중되어 군집드론 공격에 대한 효과적 대응이 우려된다. 특히, 도심에 인접한 공군 비행단은 민간 피해가 우려되어 재래식 방공무기의 사용 역시 극도로 제한되는 실정이다. 이에 본 연구에서는 AI기술이 적용된 적 군집드론의 위협으로부터 아 항공기의 생존성 향상을 위해 AI모델의 객체탐지 능력을 저해하는 소극방공 기법을 제안한다. 대표적인 적대적 머신러닝(Adversarial machine learning) 기술 중 하나인 적대적 예제(Adversarial example)를 레이저를 활용하여 항공기에 조사함으로써, 적 드론에 탑재된 객체인식 AI의 인식률 저하를 도모한다. 합성 이미지와 정밀 축소모형을 활용한 실험을 수행한 결과, 제안기법 적용 전 약 95%의 인식률을 보이는 객체인식 AI의 인식률을 제안기법 적용 후 0~15% 내외로 저하시키는 것을 확인하여 제안기법의 실효성을 검증하였다.
소형가전 제품은 종류가 다양할 뿐만 아니라 구성부품의 재질도 복잡하여 폐기시 재활용이 매우 어려운 실정이다. 특히, 폐소형가전의 경우 흑색 플라스틱의 함유량이 높을 뿐만 아니라 재질이 다양하여 재활용 공정에서 발생하는 플라스틱의 재질을 인식하여 효율적으로 선별 회수하는 것이 매우 어렵다. 본 연구에서는 기존 선별기술이 가지고 있는 흑색 플라스틱의 재질별 선별에 대한 기술적 한계 및 단점을 보완하기 위하여 레이저유도붕괴분광법(Laser-Induced Breakdown Spectroscopy, LIBS)을 기반으로 하는 흑색 플라스틱의 재질별 자동선별 시스템을 개발하였다. 본 시스템은 정량 공급장치, 위치 자동인식 장치, 레이저유도기반분광분석(LIBS) 장치, 선별분리장치 및 Control unit 등으로 구성되어 있다. 레이저유도붕괴분광법(LIBS)을 이용하여 흑색 플라스틱의 재질별 특성 스펙트럼 데이터를 획득하고, 인공지능형 알고리즘을 적용한 분류기를 설계하여 적용함으로써 흑색 플라스틱의 재질을 효율적으로 인식하고 분류할 수 있다. 본 연구에서 개발한 방사형기저함수신경회로망(RBFNNs) 분류기의 분류율은 약 97% 이상으로 나타났으며, 자동선별 시스템의 흑색 플라스틱의 재질별 인식률은 약 94.0% 이상, 선별효율은 80.0% 이상으로 조사되었다. 본 연구에서는 실험실 규모의 자동선별장치를 개발하였으며, 본 장치에 대한 실험결과를 바탕으로 흑색 플라스틱 재질인식 및 선별효율 등을 분석하므로써 향후 폐소형가전의 재활용 현장에 적용할 예정이다.
본 연구에서는 데이터마이닝 기법의 일종인 자기조직화지도(Self-Organizing Map, SOM)를 이용하여 비외감기업의 부실화 유형을 구분하고자 한다. 자기조직화지도는 인공 신경망을 기초로 자율학습을 통해 입력된 값을 유사한 군집끼리 묶어내는 방법으로, 기존의 통계적 군집 분류 방법보다 성능이 뛰어나고, 고차원의 입력데이터를 저차원으로 시각화할 수 있다는 장점 때문에 다양한 분야에서 각광받고 있다. 본 연구에서는 기존 연구의 주요 분석대상이었던 외감기업에 비해 부실화 빈도는 높지만 데이터 수집의 어려움으로 인해 분석대상에서 다소 제외되었던 비외감기업의 부실화 유형에 대해 알아보고, 유형별 구체적인 사례도 소개하고자 한다. 재무자료수집이 가능한 100개의 비외감 부실기업에 대해 분석한 결과, 비외감기업의 부실화 유형은 다섯 가지로 구분되었다. 유형 1은 전체 집단의 약 12%를 차지하며, 수익성, 성장성 등 재무지표가 다른 유형에 비해 열등하였다. 유형 2는 전체 집단의 약 14%로, 유형 1보다는 덜 심각하지만 재무지표가 대체로 열등하였다. 유형 3은 성장성 지표가 열등한 그룹으로 기업간 경쟁이 극심한 가운데 지속적으로 성장하지 못하고 부실화된 경우로 약 30%의 기업이 포함되었다. 유형 4는 성장성은 탁월하나 부채경영 등 과감한 경영으로 인해 유동성 부족이나 현금부족 등의 이유로 부실화된 그룹으로 약 25%의 기업이 포함되었다. 유형 5는 거의 모든 재무지표가 우수한 건전기업으로, 단기적인 경영전략의 실수 또는 중소기업의 특성상 경영자의 개인적 사정으로 부실화 되었을 가능성이 큰 그룹으로 약 18%의 기업이 포함되었다. 본 연구 결과는 부실화 유형을 구분하는데 기존의 통계적 방법이 아닌 자기조직화지도를 이용하였다는 점에서 학문적 의의가 있고, 비외감기업의 재무지표만으로도 1차적인 부실화 징후를 발견할 수 있다는 점에서 실무적 의의가 있다고 할 수 있다.
인공지능 기술의 급속한 발전과 함께 빅데이터의 상당 부분을 차지하는 비정형 텍스트 데이터로부터 의미있는 정보를 추출하기 위한 다양한 연구들이 활발히 진행되고 있다. 비즈니스 인텔리전스 분야에서도 새로운 시장기회를 발굴하거나 기술사업화 주체의 합리적 의사결정을 돕기 위한 많은 연구들이 이뤄져 왔다. 본 연구에서는 기업의 성공적인 사업 추진을 위해 핵심적인 정보 중의 하나인 시장규모 정보를 도출함에 있어 기존에 제공되던 범위보다 세부적인 수준의 제품군별 시장규모 추정이 가능하고 자동화된 방법론을 제안하고자 한다. 이를 위해 신경망 기반의 시멘틱 단어 임베딩 모델인 Word2Vec 알고리즘을 적용하여 개별 기업의 생산제품에 대한 텍스트 데이터를 벡터 공간으로 임베딩하고, 제품명 간 코사인 거리(유사도)를 계산함으로써 특정한 제품명과 유사한 제품들을 추출한 뒤, 이들의 매출액 정보를 연산하여 자동으로 해당 제품군의 시장규모를 산출하는 알고리즘을 구현하였다. 실험 데이터로서 통계청의 경제총조사 마이크로데이터(약 34만 5천 건)를 이용하여 제품명 텍스트 데이터를 벡터화 하고, 한국표준산업분류 해설서의 산업분류 색인어를 기준으로 활용하여 코사인 거리 기반으로 유사한 제품명을 추출하였다. 이후 개별 기업의 제품 데이터에 연결된 매출액 정보를 기초로 추출된 제품들의 매출액을 합산함으로써 11,654개의 상세한 제품군별 시장규모를 추정하였다. 성능 검증을 위해 실제 집계된 통계청의 품목별 시장규모 수치와 비교한 결과 피어슨 상관계수가 0.513 수준으로 나타났다. 본 연구에서 제시한 모형은 의미 기반 임베딩 모델의 정확성 향상 및 제품군 추출 방식의 개선이 필요하나, 표본조사 또는 다수의 가정을 기반으로 하는 전통적인 시장규모 추정 방법의 한계를 뛰어넘어 텍스트 마이닝 및 기계학습 기법을 최초로 적용하여 시장규모 추정 방식을 지능화하였다는 점, 시장규모 산출범위를 사용 목적에 따라 쉽고 빠르게 조절할 수 있다는 점, 이를 통해 다양한 분야에서 수요가 높은 세부적인 제품군별 시장정보 도출이 가능하여 실무적인 활용성이 높다는 점에서 의의가 있다.
본 논문에서 고안된 시선추적 시스템은 루게릭(Lou Gehrig's)이나 각종 근육 관련 질환으로 신체가 부자연스러운 분들을 위해 쉽게 접근할 수 있도록 고안된 안구기반 컴퓨터 입력 장치로, 약 1,700명 정도로 추산되는 국내 루게릭 환자 수와 각종사고나 질환에 의해 몸을 움직이기 힘든 환자의 수를 합쳐 잠재적 수요만 국내 3만 명에 이르는 사용자를 위한 안구입력 장치이다. 이 안구 입력 장치는 소수의 사용자를 위한 장치이기 때문에 시중에서는 수많은 종류의 상용기기가 제공되고 있어, 이 잠재적 사용자들이 사용하기에는 가격도 비싸고 사용방법도 어려워, 접근성이 많이 떨어지고 있다. 그 이유로는, 각 개인의 경제사정과 스마트 디바이스에 대한 개별 사용 경험도 조금씩 달라 시중 시선추적 시스템을 사용해보기에는 비용 면이나 사용성 면에서 접근하기가 어려운 경우가 대부분이라 할 수 있다. 이에 따라, 저가의 기기지만 엄선된 부품과 사용하기 편리한 기술을 통해 IT 기기로의 접근성을 개선하여 사용자들에게 쉬운 접근이 가능하도록 하는 시도는 반드시 필요하다. 이에, 본 논문에서는 여러 종류의 시선추적 시스템을 사용했던 사용자들의 자발적 VoC(Voice of Customer)를 통해 기존 시스템의 부족한 점을 개선하고, 사용성 테스트를 통해 이를 만족하는 시스템을 보완/설계함으로써 훨씬 더 많은 사람 및 환자들이 편리하게 사용할 수 있게하고, 기존 PCCR 시스템 대비 계산량을 15배 이상 줄이는 동시에, 시선 오차도 0.5~1도 이내로 보완된 우수한 성능의 시선추적 시스템을 제안한다.
본 논문은 한국어에 대해서 구묶음을 수행한 후에 의존구조를 분석하는 방법을 제안한다. 의존구조 분석은 단어의 지배어를 결정하는 과정이다. 지배어를 정할 때, 문법적인 지배어를 정할 것인지 의미적인 지배어를 정할 것인지가 고질적인 문제이다. 일반적으로는 문법적인 지배어를 정하고 있다. 예를 들면 문장 "밥을 먹고 싶다"에서 어절 "먹고"의 지배어로 "싶다"를 정한다. 그러나 "싶다"는 보조용언으로 의미적으로 지배어가 될 수 없다. 이와 같은 방법으로 구문을 분석하면 의미분석을 위해서 또 다른 변환이 있어야 한다. 본 논문에서는 이런 문제를 다소 완화하기 위해서 구묶음을 수행한 후에 구문을 분석하는 방법을 제안한다. 구묶음은 문장을 구성성분 단위로 분할하는 과정이며 구성성분은 내용어 말덩이와 기능어 말덩이로 구성된다. 구묶음을 수행하면 구문 분석의 입력이 되는 문장 성분의 수가 줄어들므로 구문 분석 속도가 개선될 수 있으며, 문장에서 중심어를 중심으로 하나의 말덩이로 묶이므로 말덩이에 대해서만 그 의존 관계를 파악할 수 있어 구문 분석의 효율성을 높일 수 있다. 본 논문은 세종의존말뭉치를 사용해서 성능을 분석했으며 UAS와 LAS가 각각 86.48%와 84.56%였으며 입력의 노드 수도 약 22% 정도 줄일 수 있었다.
최근 4차 산업혁명으로 촉발된 스마트공장에 관한 연구가 활발히 진행되고 있다. 이에 따라 제조업에서는 강건한 성능의 딥러닝 기술을 바탕으로 생산성 향상과 품질 향상을 위해 다양한 연구를 진행 중이다. 본 논문은 타이어 제조공정의 육안검사 단계에서 타이어 표면 결함을 검출하는 방법에 관한 연구로서 3D 카메라를 통해 취득한 깊이 이미지를 이용한 타이어 표면 결함 검출 방법을 소개한다. 본 연구에서 다루는 타이어 표면 깊이 이미지는 타이어 표면의 얕은 깊이로 인해 발생되는 낮은 깊이 대비와 데이터 취득 환경으로 인해 기준 깊이 값의 차이가 발생하는 문제가 있다. 그리고 제조업의 특성상 검출 성능과 함께 실시간으로 처리될 수 있는 성능을 지닌 알고리즘이 요구된다. 따라서, 본 논문에서는 타이어 표면 결함 검출 알고리즘이 복잡한 알고리즘 파이프라인으로 구성되지 않도록 상대적으로 단순한 방법들을 통해 깊이 이미지를 정규화하는 방법을 연구하였으며 검출 성능과 속도를 모두 만족할 수 있는 딥러닝 방법인 YOLO V3를 이용하여 일반적인 정규화 방법과 본 논문에서 제안하는 정규화 방법의 비교 실험을 진행하였다. 실험의 결과로 본 논문에서 제안한 정규화 방법으로 mAP 0.5 기준 약 7% 성능이 향상된 것을 확인하였으며 본 논문에서 제시한 방법이 효과적임을 보였다.
지반조사방법 중 표준관입시험 결과인 N치를 통해 알 수 있는 지반 지지층의 깊이는 각종 지반 구조물의 설계를 위한 기본적인 지반 정보를 제공하는 중요한 지표이다. 이러한 지반조사 결과는 시간과 비용 측면을 고려해 간헐적으로 수행될 수밖에 없으며, 그 결과는 현장 지반의 대표성을 갖게 된다. 그러나 지반 내에는 다양한 지층 변동성 및 불확실성이 존재하므로 간헐적인 현장조사를 통해 지반의 특성을 모두 파악하는 것은 어렵다. 따라서 시추공 정보로부터 미계측 지점을 예측하기 위한 방법들이 제시되어 왔으며, 대표적인 방법으로는 공간보간기법인 크리깅(Krigging), 역거리가중법(IDW)등이 있다. 최근에는 보간기법의 정확성을 높이기 위해 지반분야와 딥러닝 기술을 접목한 연구들이 수행되고 있다. 본 연구에서는 약 2만 2천공의 지반조사 결과를 바탕으로 딥러닝과 공간보간기법으로 지반 지지층 깊이 예측을 위한 비교 연구를 수행하였다. 이를 위해 딥러닝 알고리즘인 완전연결 네트워크와 포인트넷 방법, 공간보간기법으로는 IDW를 사용하였다. 각 분석 모델의 지지층 예측 결과 중 오차의 평균은 IDW가 3.01m 였으며, 완전연결 네트워크 및 포인트넷이 각 3.22m와 2.46m 였다. 결과의 표준편차는 IDW가 3.99였으며, 완전연결네트워크와 포인트넷이 3.95와 3.54로 나타났다. 연구 결과 3차원 정보에 특화된 포인트넷 구조를 적용한 네트워크가 IDW 및 완전연결 네트워크에 비해 개선된 결과를 나타냈다.
최근 정부 기관을 사칭한 가짜 QR(Quick Response)코드를 이용하여 개인정보와 금융정보를 탈취하는 QR코드와 스미싱을 결합한 '큐싱(Qshing)' 공격이 증가하는 추세이다. 특히, 이 공격 방식은 사용자가 단지 QR코드를 인식하는 것만으로 스미싱 페이지에 연결되거나 악성 소프트웨어를 다운로드하게 만들어 피해자가 자신이 공격당했는지조차 인지하기 어려운 특징이 있다. 본 논문에서는 머신러닝 알고리즘을 활용해 QR 코드 내 URL의 악성도를 파악하는 분류 기술을 개발하고, 기존의 QR 코드 리더기와 결합하는 방식에 관해 연구를 진행하였다. 이를 위해 QR코드 내 악성 URL 128,587개, 정상 URL 428,102개로부터 프로토콜, 파라미터 등 각종 특징 35개를 추출하여 데이터셋을 구축한 후, AutoML을 이용하여 최적의 알고리즘과 하이퍼파라미터를 도출한 결과, 약 87.37%의 정확도를 보였다. 이후 기존 QR코드 리더기와 학습한 분류 모델의 결합을 설계하여 큐싱 공격에 대응할 수 있는 서비스를 구현하였다. 결론적으로, QR코드 내 악성 URL 분류 모델에 최적화된 알고리즘을 도출하고, 기존 QR코드 리더기에 결합하는 방식이 큐싱 공격의 대응 방안 중 하나임을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.