최근 디지털 플랫폼을 활용한 민생 위협 범죄는 '15년 약 14만여 건, '16년 약 15만여 건 등 사이버범죄 지속 증가 추이이며 전통적인 수사기법을 통한 온라인 범죄 대응에 한계가 있다고 판단되고 있다. 현행 수기 온라인 검색 및 인지 수사 방식만으로는 빠르게 변화하는 민생 위협 범죄에 능동적으로 대처 할 수 없으며, 소셜 미디어 특성상 불특정 다수에게 게시되는 콘텐츠로 이루어 졌다는 점에서 더욱 어려움을 겪고 있다. 본 연구는 민생 침해 범죄가 발생하는 온라인 미디어의 특성을 고려한 콘텐츠 웹 수집 방식 중 사이트 중심의 수집과 Open API를 통한 방식을 제시한다. 또한 불법콘텐츠의 특성상 신속히 게시되고 삭제되며 신조어, 변조어 등이 다양하고 빠르게 생성되기 때문에 수작업 등록을 통한 사전 기반 형태소 분석으로는 빠른 인지가 어려운 상황이다. 이를 해소 하고자 온라인에서 벌어지는 민생 침해 범죄를 게시하는 불법 콘텐츠를 빠르게 인지하고 대응하기 위한 데이터 전처리인 WPM(Word Piece Model)을 통하여 기존의 사전 기반의 형태소 분석에서 토크나이징 방식을 제시한다. 데이터의 분석은 불법 콘텐츠의 수사를 위한 지도학습 기반의 분류 알고리즘 모델을 활용, 투표 기반(Voting) 앙상블 메소드를 통하여 최적의 정확도를 검증하고 있다. 본 연구에서는 민생경제를 침해하는 범죄를 사전에 인지하기 위하여 불법 다단계에 대한 사례를 중심으로 분류 알고리즘 모델을 활용하고, 소셜 데이터의 수집과 콘텐츠 수사에 대하여 효과적으로 대응하기 위한 실증 연구를 제시하고 있다.
해상 객체 검출은 선장이 육안으로 해상 주변의 충돌 위험성이 있는 부유물을 컴퓨터를 통해 자동으로 검출하여 사람이 확인하는 방법과 유사한 정확도로 인지하는 방법을 말한다. 기존 선박에서는 레이더의 전파를 통해 해상 부유물의 유무와 거리를 판단하였지만 형체를 알아내어 장애물이 무엇인지는 판단할 수 없는 약점이 있다. 반면, 카메라는 인공지능 기술이 발달하면서 물체를 검출하거나 인식하는데 성능이 우수하여 항로에 있는 장애물을 정확하게 판단할 수 있다. 하지만, 디지털 영상을 분석하기 위해서는 컴퓨터가 대용량의 화소를 연산해야 하는데 CPU는 순차적 처리 방식에 특화된 구조이기에 처리속도가 매우 느려 원활한 서비스 지원은 물론 안전성도 보장할 수 없게 된다. 따라서 본 논문에서는 해상 객체 인식 소프트웨어를 개발하였고 연산량이 많은 부분을 가속화하기 위해 FPGA로 구현하였다. 또한, 임베디드 보드와 FPGA 인터페이스를 통해 시스템 구현 완성도를 높였으며 소프트웨어 기반의 기존 구현 방법보다 약 30배의 빠른 성능을 얻었고 전체 시스템의 속도는 약 3배 이상이 개선되었음을 확인할 수 있었다.
드론은 국토조사, 수송, 해양, 환경, 방재, 문화재, 건설 등 다양한 분야에서 활용되고 있다. 또한 사물인터넷(Internet of Things), 인공지능(Artificial Intelligence) 등과 관련하여 4차 산업 혁명의 핵심기술을 검증하고 적용시킬 수 있는 기술로 떠오르고 있다. 본 연구에서는 드론을 활용하여 균열을 자동으로 탐지할 수 있는 딥러닝 모델을 개발하고자 한다. 딥러닝 학습을 위한 이미지 데이터는 Mavic3 드론을 이용하여 수집하였고 촬영고도는 20m, ×7배율로 촬영하였다. 촬영 시 약 2m/s의 속도로 전진하여 영상을 찍고, 프레임을 추출하는 식으로 데이터를 수집하였다. 이런식으로 수집한 데이터를 통해 딥러닝 학습을 진행하였다. 본 연구에서는 딥러닝 학습모델로 Backbone으로는 Swin Transformer, Architecture로 UperNet을 사용하였다. 약 800장의 라벨링 된 데이터를 Augmentation기법으로 데이터 양을 증가시키고 3차에 걸쳐 학습을 진행하였다. 1차와 2차 학습 시 Cross-Entropy loss function을 사용하였고 3차 학습 시 Tversky Loss Function을 사용하였다. 학습결과, 균열 탐지와 균열율을 계산할 수 있는 모델을 개발하였다. 또한, 드론의 위치 정보를 이용해 특정 도로의 한 차선 균열율을 계산할 수 있는 모델을 개발하였다. 향후 추가적인 연구를 통하여 균열탐지모델의 고도화를 사물인터넷(IoT)과의 융합으로 이루었을 때 소파보수(Patching)나 포트홀(Pothole)의 탐지가 가능할 것으로 보인다. 또한 드론의 실시간 탐지 업무수행으로 포장 유지 보수구간에 대한 탐지를 신속하게 확보할 수 있을것으로 기대된다.
교통사고에 가장 취약한 도로는 이면도로 비신호교차로이며, 이들 취약지점에 AI 및 엣지 컴퓨팅 융합 기술을 적용하여 교통사고를 예방하고자 하는 시도가 이루어졌다. 본 연구에서는 현장 데이터를 활용하여 AI 및 엣지컴퓨팅 기술이 어떻게 교통사고 감소에 영향을 미칠 수 있고 한계가 무엇인지 교통공학적 측면에서 분석하였다. AI 객체인식으로 20m 후방에서 객체정보를 취득함으로써 운전자는 약 3.6초의 대응시간을 확보하게 되고, 엣지기술에 의해 0.5~0.8초만에 정보가 표출되어 운전자는 교차로 상황에 대응할 수 있는 시간을 얻게 된다. 또한, 교차로 접근로 10m지점에서는 11~12km, 20m지점에서는 20km/h 수준으로 속도관리가 이루어질 때 교차로 진입 전 정지가 가능한 것으로 분석되었다. 따라서 이들 시스템 도입 후 실증 교차로의 데이터를 Taylor 모형에 적용하면 교통사고 확률이 약 40% 감소하는 것으로 분석되었다. 결과적으로 높은 AI 기술의 높은 객체인식률, 엣지기술의 실시간 정보제공 그리고 교차로 접근로의 적정 속도관리가 함께 이루어질 때 교통사고 감소가 가능한 것으로 나타났다.
스마트 팜 관리의 활용 효율성을 높이기 위해서는 작물 및 환경 변화에 대한 사전 검사를 실시간으로 평가하기 위한 모델링 기법이 필요하다. 시설 온실 내부의 CO2와 같은 필수 환경 요소는 다양한 상관 변수가 밀접하게 결합 된 시간 영역에서 신뢰할 수 있는 추정 모델을 확립하기가 어렵다. 따라서 본 연구는 입력 영역과 출력 변수를 CO2와 같은 시간 관점에서 인접 영역에 분포된 환경 정보를 이용하여 시간 복잡도를 줄이기 위한 인공 신경망을 개발하기 위해 수행되었다. 스마트 팜을 계측하기 위한 센서 모듈을 통해 환경 요소를 지속적으로 측정하였다. 실험기간의 평균 데이터로 예측하는 모델링 1, 전일 데이터로 예측하는 모델링 2을 구성하여 CO2 환경인자의 상호관계를 예측하였다. 전일의 데이터 학습으로 예측하는 모델링 2가 60일 평균값으로 예측한 모델링 1에 비해 성능이 우수하였다. 30일 이전까지는 대부분 0.70~0.88사이의 결정계수를 보였으며 모델링 2가 약0.05정도 높게 나타났다. 하지만 30일 이후에는 두 가지 모델링 모두 결정 계수 값이 0.50 이하로 낮은 값을 보였다. 모델링 접근법에 따라 결정 요인의 값을 비교하고 분석 한 결과 인접한 시간대의 데이터는 고정 신경망 모델을 사용하는 대신 예측이 필요한 지점에서 상대적으로 높은 성능을 나타냈다.
해양사고 발생시 실종자는 해양에 노출된 시간이 길어질수록 생존확률이 빠르게 감소하기 때문에 인명구조를 위해서는 신속한 수색이 필요하다. 또한 해양의 수색영역은 육상에 비해서 매우 넓기 때문에 효율적인 수색을 위해서는 선박을 이용한 육안수색보다는 인공위성이나 항공기에 탑재된 센서를 이용한 해상 객체 탐지 기술의 적용이 필요하다. 본 연구는 항공기에 탑재된 초분광 영상 센서를 이용하여 해양에서 객체를 신속하게 탐지하기 위한 목적으로 진행되었다. 초분광 영상 센서로 촬영된 영상은 8,241 × 1,024의 공간 해상도를 가지며, 한 화소당 0.7 m의 분해능과 127개의 스펙트럼으로 구성된 대용량의 데이터이다. 본 연구에서는 이러한 데이터를 신속하게 분석하기 위한 목적으로 DBSCAN을 사용한 해수 식별 알고리즘과 밀도 기반의 육지 제거 알고리즘을 결합한 해상 객체 탐지 모델을 개발하였다. 개발한 모델은 초분광 영상에 적용하였을 때 약 5 km2의 해상 영역을 100초 내로 분석할 수 있는 성능을 보였다. 또한 개발한 모델의 탐지 정확도를 평가하기 위해서 항공기를 이용하여 목포, 군산, 여수 지역의 초분광 영상을 촬영하였으며, 본 연구에서 개발한 탐지 모델에 적용한 결과, 실험 영상 내의 선박들을 90 %의 정확도로 탐지할 수 있는 결과를 얻었다. 본 연구에서 개발된 기술은 소형 선박의 수색·구조 활동을 지원하는 중요한 정보로 활용될 수 있을 것으로 기대한다.
부정맥 분류를 위한 기존 연구들은 분류의 정확성을 높이기 위해 신경회로망(Artificial Neural Network), 기계학습(Machine Learning) 등을 이용한 방법이 연구되어 왔다. 특히 딥러닝은 신경회로망의 문제인 은닉층 개수의 한계를 해결함으로 인해 인공 지능 기반의 부정맥 분류에 많이 사용되고 있다. 본 연구에서는 AR 기반의 특징점 추출과 딥러닝을 통한 부정맥 분류 방법을 제안한다. 이를 위해 먼저 잡음을 제거한 ECG 신호에서 R파를 검출하고 자기 회귀 모델을 통하여 최적의 QRS와 RR간격을 추출하였다. 이후 딥러닝을 통한 지도학습 방법으로 가중치를 학습시키고 부정맥을 분류하였다. 제안된 방법의 타당성 평가를 위해 MIT-BIH 부정맥 데이터베이스를 통해 각 파라미터에 따른 훈련 및 분류 정확도를 확인하였다. 성능 평가 결과 PVC는 약 97% 이상의 평균 분류율을 나타내었다.
국내 웹툰 산업 매출액이 전년도 대비 약 65% 폭발적 성장을 하였고 향후 매출 규모가 1조원을 돌파할 것이라 예상을 하고 있다. 웹툰 제작 과정을 살펴보면 스토리와 콘티와 같이 창작을 필요로 하는 작업도 있지만, 스케치와 펜터치와 같은 단순 반복 작업도 있기 때문에 최근 주목받고 있는 딥러닝 기반 인간자세 추정방법을 사용하여 간소화 할 수 있다면, 웹툰 제작 과정을 효과적으로 개선할 수 있다. 따라서 본 연구는 인간자세 추정방법을 사용하여 인간의 동작을 스케치한 2차원 웹툰 캐릭터와 관절을 매칭 시켜서, 인간의 동작에 따라서 캐릭터의 동작을 생성시키는 방법을 제안한다. 이를 위해 생성한 2차원 캐릭터를 SVG 파일 형식인 벡터화된 그래픽 이미지로 생성시켜 인간자세의 관절을 나타내는 스켈레톤과 매칭을 시켰다. 실험결과를 통해 2차원 웹툰 캐릭터의 포즈가 웹 카메라의 사용자 자세와 동일한 동작을 생성시킬 수 있는 것을 확인할 수 있었다. 또한 저장한 정지 이미지에서 하나의 포즈를 선별하여 필요한 장면에 삽입할 수도 있고, 연속 동작에 대하여 비디오로 녹화하여 포즈 선별을 할 수 있다는 점도 확인하였다. 제안한 포즈 생성 방법은 기존의 포즈 투 포즈 방식 애니메이션 포즈 생성에 큰 기여를 할 수 있을 것으로 기대된다.
본 논문에서는 RGB 영상에서 홍채 검출 방법에 관하여 기술하였다. 기존의 홍채 검출 방법은 대부분 적외선 영상을 대상으로 하고 있어, 다양한 응용을 위해서는 RGB 영상의 홍채 검출 기술이 요구된다. 제안된 홍채 검출 방법은 i) 입력 영상에서 원형 허프 변환을 사용한 홍채 후보 영역 검출, ii) 딥러닝 기반의 동공 중심점 검출, iii) 동공 중심점을 이용한 홍채 영역 선택, iv) 선택된 홍채 영역 보정 과정으로 구성된다. 홍채 후보 영역은 허프 공간을 생성한 후 중심점 후보의 교차 개수가 많은 순으로 검출하며, 후보 영역 중 홍채는 검출된 동공의 중심점을 기준으로 선택한다. 그리고, 홍채의 모양이 왜곡되어 오차가 발생하는 것을 보완하기 위해 검출된 홍채 중심을 기준으로 새로운 경계점을 찾아 보정하는 방법을 사용하였다. 또한, 실험을 통하여 제안된 방법이 기존 원형 허프 변환 방법 대비 약 27.4% 향상된 정확도를 갖는 것을 확인하였다.
인간의 기본 욕구 중 하나인 존중의 욕구를 충족시키지 못하는 사회적 배제는 이를 지각한 사람들로 하여금 물리적 따뜻함을 추구하도록 만든다고 알려져 있다. 그러나 사회적 배제가 따뜻함을 추구하게 만드는 현상이 조명의 색 같은 감성적이고 상징적인 차원에도 일반화될 수 있을지에 대해서는 연구가 드물었다. 본 연구는 지각된 사회적 배제가 따뜻한 조명 선호에 미치는 효과를 검증하기 위해 이루어졌으며, 이를 위해 두 가지 실험을 수행하였다. 실험-1은 어제 사람들로부터 존중받은 사람은 사회적 배제를 지각하지 않은 집단으로, 존중받지 못한 사람은 사회적 배제를 지각한 집단으로 구분한 후, 따뜻한 조명(3000K), 중립적 조명(4000K), 차가운 조명(6000K)에 대한 선호도를 측정하였다. 결과적으로 사회적 배제를 지각한 집단은 그렇지 않은 집단보다 따뜻한 조명 선호도가 강했고, 차가운 조명 선호도는 약했다. 또한 사회적 배제를 지각한 집단은 중립적 조명보다 따뜻한 조명을 강하게 선호하는 반면, 차가운 조명을 약하게 선호함을 확인하였다. 실험-2는 실험-1과 동일한 방식으로 집단을 구분한 후, 따뜻한 조명이 적용된 공간, 중립적 조명이 적용된 공간, 차가운 조명이 적용된 공간에 대한 선호를 측정하였다. 결과적으로 사회적 배제를 지각한 집단은 그렇지 않은 집단보다 따뜻한 조명이 적용된 공간에 대한 선호도가 강했고, 차가운 조명이 적용된 공간에 대한 선호도는 약했다. 아울러 사회적 배제를 지각한 집단은 중립적 조명이 적용된 공간보다 따뜻한 조명이 적용된 공간을 강하게 선호하는 반면, 차가운 조명이 적용된 공간은 약하게 선호함을 관찰하였다. 본 연구는 장애인, 다문화 가정, 이주 노동자와 같이 사회적 배제를 경험한 사람들의 생활공간 디자인, 이들을 대상으로 한 인공지능 상담 서비스 및 친구 캐릭터 개발 등에 시사점을 준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.