• Title/Summary/Keyword: 야금

Search Result 3,555, Processing Time 0.028 seconds

Effect of High Frequency Heat Treatment on the Microstructure and Wear Properties of Ni based Self Fluxing Composite Coating Layer Manufactured by HVOF Spray Process (High Velocity Oxygen Fuel 공정으로 제조된 Ni 계 자용성 복합 코팅 소재의 미세조직과 마모 특성에 미치는 고주파 열처리의 영향)

  • Wi, Dong-Yeol;Ham, Gi-Su;Park, Sun-Hong;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.26 no.5
    • /
    • pp.421-431
    • /
    • 2019
  • In this study, the formation, microstructure, and wear properties of Colmonoy 88 (Ni-17W-15Cr-3B-4Si wt.%) + Stellite 1 (Co-32Cr-17W wt.%) coating layers fabricated by high-velocity oxygen fuel (HVOF) spraying are investigated. Colmonoy 88 and Stellite 1 powders were mixed at a ratio of 1:0 and 5:5 vol.%. HVOF sprayed self-fluxing composite coating layers were fabricated using the mixed powder feedstocks. The microstructures and wear properties of the composite coating layers are controlled via a high-frequency heat treatment. The two coating layers are composed of ${\gamma}-Ni$, $Ni_3B$, $W_2B$, and $Cr_{23}C_6$ phases. Co peaks are detected after the addition of Stellite 1 powder. Moreover, the WCrB2 hard phase is detected in all coating layers after the high-frequency heat treatment. Porosities were changed from 0.44% (Colmonoy 88) to 3.89% (Colmonoy 88 + ST#1) as the content of Stellite 1 powder increased. And porosity is denoted as 0.3% or less by inducing high-frequency heat treatment. The wear results confirm that the wear property significantly improves after the high-frequency heat treatment, because of the presence of well-controlled defects in the coating layers. The wear surfaces of the coated layers are observed and a wear mechanism for the Ni-based self-fluxing composite coating layers is proposed.

Effects of Sintering Additives on the Thermal and Mechanical Properties of AlN by Pressureless Sintering (상압소결 질화알루미늄의 소결 첨가제 변화에 따른 열적 및 기계적 특성)

  • Hwang, Jin Uk;Mun, So Youn;Nam, Sang Yong;Dow, Hwan Soo
    • Journal of Powder Materials
    • /
    • v.26 no.5
    • /
    • pp.395-404
    • /
    • 2019
  • Aluminum nitride (AlN) has excellent electrical insulation property, high thermal conductivity, and a low thermal expansion coefficient; therefore, it is widely used as a heat sink, heat-conductive filler, and heat dissipation substrate. However, it is well known that the AlN-based materials have disadvantages such as low sinterability and poor mechanical properties. In this study, the effects of addition of various amounts (1-6 wt.%) of sintering additives $Y_2O_3$ and $Sm_2O_3$ on the thermal and mechanical properties of AlN samples pressureless sintered at $1850^{\circ}C$ in an $N_2$ atmosphere for a holding time of 2 h are examined. All AlN samples exhibit relative densities of more than 97%. It showed that the higher thermal conductivity as the $Y_2O_3$ content increased than the $Sm_2O_3$ additive, whereas all AlN samples exhibited higher mechanical properties as $Sm_2O_3$ content increased. The formation of secondary phases by reaction of $Y_2O_3$, $Sm_2O_3$ with oxygen from AlN lattice influenced the thermal and mechanical properties of AlN samples due to the reaction of the oxygen contents in AlN lattice.

The Influence of Fe Particle Size on the Critical Properties of MgB2 Superconductor (MgB2 초전도체의 임계특성에 대한 Fe 입자 크기의 영향)

  • Jeong, Hyeondeok;Lee, Dong-Gun;Ryu, Sung-Soo;Park, Hai-Woong;Kim, Chan-Joong;Jun, Byung-Hyuk
    • Journal of Powder Materials
    • /
    • v.26 no.5
    • /
    • pp.432-436
    • /
    • 2019
  • This study demonstrates the effect of addition of Fe particles of different sizes on the critical properties of the superconductor $MgB_2$. Bulk $MgB_2$ is synthesized by ball milling Mg and B powders with Fe particles at $900^{\circ}C$. When Fe particles with size less than $10{\mu}m$ are added in $MgB_2$, they easily react with B and form the FeB phase, resulting in a reduction in the amount of the $MgB_2$ phase and deterioration of the crystallinity. Accordingly, both the critical temperature and the critical current density are significantly reduced. On the other hand, when larger Fe particles are added, the $Fe_2B$ phase forms instead of FeB due to the lower reactivity of Fe toward B. Accordingly, negligible loss of B occurs, and the critical properties are found to be similar to those of the intact $MgB_2$.

Effect of Li2O-Bi2O3 Addition on the Piezoelectric Properties of Pb(Mg1/3Nb2/3)0.65Ti0.35O3 Ceramics (Li2O-Bi2O3 첨가가 Pb(Mg1/3Nb2/3)0.65Ti0.35O3 세라믹의 압전 특성에 미치는 영향)

  • Kim, Jae Hyuk;Kim, Shi Yeon;Choi, Jeoung Sik;Yeo, Dong-Hun;Shin, Hyo-Soon;Nahm, Sahn
    • Journal of Powder Materials
    • /
    • v.26 no.5
    • /
    • pp.405-409
    • /
    • 2019
  • Piezoelectric ceramic specimens with the $Pb(Mg_{1/3}Nb_{2/3})_{0.65}Ti_{0.35}O_3$ (PMN-PT) composition are prepared by the solid state reaction method known as the "columbite precursor" method. Moreover, the effects of the $Li_2O-Bi_2O_3$ additive on the microstructure, crystal structure, and piezoelectric properties of sintered PMN-PT ceramic samples are investigated. The addition of $Li_2O-Bi_2O_3$ lowers the sintering temperature from $1,200^{\circ}C$ to $950^{\circ}C$. Moreover, with the addition of >5 wt.% additive, the crystal structure changes from tetragonal to rhombohedral. Notably, the sample with 3 wt.% additive exhibits excellent piezoelectric properties ($d_{33}=596pC/N$ and Kp = 57%) and a sintered density of $7.92g/cm^3$ after sintering at $950^{\circ}C$. In addition, the sample exhibits a curie temperature of $138.6^{\circ}C$ at 1 kHz. Finally, the compatibility of the sample with a Cu electrode is examined, because the energy-dispersive X-ray spectroscopy data indicate the absence of interdiffusion between Cu and the ceramic material.

Hydrogen Reduction Behavior and Microstructure Characteristics of Ball-milled CuO-Co3O4 Powder Mixtures (볼 밀링한 CuO-Co3O4 혼합분말의 수소환원 거동과 미세조직 특성)

  • Han, Ju-Yeon;Lee, Gyuhwi;Kang, Hyunji;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.26 no.5
    • /
    • pp.410-414
    • /
    • 2019
  • The hydrogen reduction behavior of the $CuO-SCo_3O_4$ powder mixture for the synthesis of the homogeneous Cu-15at%Co composite powder has been investigated. The composite powder is prepared by ball milling the oxide powders, followed by a hydrogen reduction process. The reduction behavior of the ball-milled powder mixture is analyzed by X-ray diffraction (XRD) and temperature-programmed reduction at different heating rates in an Ar-10%H2 atmosphere. The scanning electron microscopy and XRD results reveal that the hydrogen-reduced powder mixture is composed of fine agglomerates of nanosized Cu and Co particles. The hydrogen reduction kinetics is studied by determining the degree of peak shift as a function of the heating rate. The activation energies for the reduction of the oxide powders estimated from the slopes of the Kissinger plots are 58.1 kJ/mol and 65.8 kJ/mol, depending on the reduction reaction: CuO to Cu and $SCo_3O_4$ to Co, respectively. The measured temperature and activation energy for the reduction of $SCo_3O_4$ are explained on the basis of the effect of pre-reduced Cu particles.

Research trend in Fabrication of Metastable-phase Iron Nitrides for Hard Magnetic Applications (준안정상 기반의 질화철계 영구자석소재 제조연구동향)

  • Kim, Kyung Min;Lee, Jung-Goo;Kim, Kyung Tae;Baek, Youn-Kyoung
    • Journal of Powder Materials
    • /
    • v.26 no.2
    • /
    • pp.146-155
    • /
    • 2019
  • Rare earth magnets are the strongest type of permanent magnets and are integral to the high tech industry, particularly in clean energies, such as electric vehicle motors and wind turbine generators. However, the cost of rare earth materials and the imbalance in supply and demand still remain big problems to solve for permanent magnet related industries. Thus, a magnet with abundant elements and moderate magnetic performance is required to replace rare-earth magnets. Recently, $a^{{\prime}{\prime}}-Fe_{16}N_2$ has attracted considerable attention as a promising candidate for next-generation non-rare-earth permanent magnets due to its gigantic magnetization (3.23 T). Also, metastable $a^{{\prime}{\prime}}-Fe_{16}N_2$ exhibits high tetragonality (c/a = 1.1) by interstitial introduction of N atoms, leading to a high magnetocrystalline anisotropy constant ($K_1=1.0MJ/m^3$). In addition, Fe has a large amount of reserves on the Earth compared to other magnetic materials, leading to low cost of raw materials and manufacturing for industrial production. In this paper, we review the synthetic methods of metastable $a^{{\prime}{\prime}}-Fe_{16}N_2$ with film, powder and bulk form and discuss the approaches to enhance magnetocrystalline anisotropy of $a^{{\prime}{\prime}}-Fe_{16}N_2$. Future research prospects are also offered with patent trends observed thus far.

Fabrication of Porous Mo-Cu by Freeze Drying and Hydrogen Reduction of Metal Oxide Powders (금속산화물 분말의 동결건조 및 수소환원에 의한 Mo-Cu 다공체 제조)

  • Kang, Hyunji;Han, Ju-Yeon;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.26 no.1
    • /
    • pp.1-5
    • /
    • 2019
  • In this study, porous Mo-5 wt% Cu with unidirectionally aligned pores is prepared by freeze drying of camphene slurry with $MoO_3-CuO$ powders. Unidirectional freezing of camphene slurry with dispersion stability is conducted at $-25^{\circ}C$, and pores in the frozen specimens are generated by sublimation of the camphene crystals. The green bodies are hydrogen-reduced at $750^{\circ}C$ and sintered at $1000^{\circ}C$ for 1 h. X-ray diffraction analysis reveals that $MoO_3-CuO$ composite powders are completely converted to a Mo-and-Cu phase without any reaction phases by hydrogen reduction. The sintered bodies with the Mo-Cu phase show large and aligned parallel pores to the camphene growth direction as well as small pores in the internal walls of large pores. The pore size and porosity decrease with increasing composite powder content from 5 to 10 vol%. The change of pore characteristics is explained by the degree of powder rearrangement in slurry and the accumulation behavior of powders in the interdendritic spaces of solidified camphene.

Effects of Li-Sources on Microstructure of Metallurgically Pre-Lithiated SiOx for Li-Ion Battery's Anode (야금학적으로 Pre-Lithiation된 리튬이온전지 음극용 SiOx의 리튬소스가 미세구조에 미치는 영향)

  • Lee, Jae Young;Lee, Bora;Kim, Nak-Won;Jang, Boyun;Kim, Junsoo;Kim, Sung-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.1
    • /
    • pp.78-85
    • /
    • 2019
  • The effect of various lithium sources such as LiCl, LiOH, and Li-metal on the microstructure and electrochemical properties of granulated $SiO_x$ powders were investigated. Various lithium sources were metallurgically added for a passive pre-lithiation of $SiO_x$ to improve its low initial coulombic efficiency. In spite of using the same amount of Li in various sources, as well as the same process conditions, different lithium silicates were obtained. Moreover, irreversible phases were formed without reduction of $SiO_x$, which might be from additional oxygen incorporation during the process. Accordingly, there were no noticeable electrochemical enhancements. Nevertheless, the $Li_4SiO_4$ phase changes the initial electrochemical reaction, and consequently the relationship between the microstructure and electrochemical properties of metallurgically pre-lithiated $SiO_x$ could provide a guideline for the optimization of the performance of lithium ion batteries.

Study on Manufacture of High Purity TiCl4 and Synthesis of High Purity Ti Powders (고순도 TiCl4 제조 및 이를 활용한 고순도 Ti 분말 제조 공정 연구)

  • Lee, Jieun;Yoon, Jin-Ho;Lee, Chan Gi
    • Journal of Powder Materials
    • /
    • v.26 no.4
    • /
    • pp.282-289
    • /
    • 2019
  • Ti has received considerable attention for aerospace, vehicle, and semiconductor industry applications because of its acid-resistant nature, low density, and high mechanical strength. A common precursor used for preparing Ti materials is $TiCl_4$. To prepare high-purity $TiCl_4$, a process based on the removal of $VOCl_3$ has been widely applied. However, $VOCl_3$ removal by distillation and condensation is difficult because of the similar physical properties of $TiCl_4$ and $VOCl_3$. To circumvent this problem, in this study, we have developed a process for $VOCl_3$ removal using Cu powder and mineral oil as purifying agents. The effects of reaction time and temperature, and ratio of purifying agents on the $VOCl_3$ removal efficiency are investigated by chemical and structural measurements. Clear $TiCl_4$ is obtained after the removal of $VOCl_3$. Notably, complete removal of $VOCl_3$ is achieved with 2.0 wt% of mineral oil. Moreover, the refined $TiCl_4$ is used as a precursor for the synthesis of Ti powder. Ti powder is fabricated by a thermal reduction process at $1,100^{\circ}C$ using an $H_2-Ar$ gas mixture. The average size of the Ti powder particles is in the range of $1-3{\mu}m$.

Fabrication of Nb-Si-B Alloys Using the Pulverized Nb-T2 Alloy Powder (Nb-T2 합금의 파쇄분말을 사용한 Nb-Si-B계 합금의 제조)

  • Cho, Min-Ho;Kim, Sung-Jun;Kang, Hyun-Ji;Oh, Sung-Tag;Kim, Young Do;Lee, Seong;Suk, Myung Jin
    • Journal of Powder Materials
    • /
    • v.26 no.4
    • /
    • pp.299-304
    • /
    • 2019
  • Nb-Si-B alloys with Nb-rich compositions are fabricated by spark plasma sintering for high-temperature structural applications. Three compositions are selected: 75 at% Nb (Nb0.7), 82 at% Nb (Nb1.5), and 88 at% Nb (Nb3), the atomic ratio of Si to B being 2. The microstructures of the prepared alloys are composed of Nb and $T_2$ phases. The $T_2$ phase is an intermetallic compound with a stoichiometry of $Nb_5Si_{3-x}B_x$ ($0{\leq}x{\leq}2$). In some previous studies, Nb-Si-B alloys have been prepared by spark plasma sintering (SPS) using Nb and $T_2$ powders (SPS 1). In the present work, the same alloys are prepared by the SPS process (SPS 2) using Nb powders and hypereutectic alloy powders with composition 67at%Nb-22at%Si-11at%B (Nb67). The Nb67 alloy powders comprise $T_2$ and eutectic ($T_2+Nb$) phases. The microstructures and hardness of the samples prepared in the present work have been compared with those previously reported; the samples prepared in this study exhibit finer and more uniform microstructures and higher hardness.