DOI QR코드

DOI QR Code

The Influence of Fe Particle Size on the Critical Properties of MgB2 Superconductor

MgB2 초전도체의 임계특성에 대한 Fe 입자 크기의 영향

  • Jeong, Hyeondeok (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Dong-Gun (Sam Dong Co., Ltd., R&D Center) ;
  • Ryu, Sung-Soo (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Park, Hai-Woong (Department of Materials Engineering, Korea University of Technology Education) ;
  • Kim, Chan-Joong (Neutron and Radioisotope Application Research Division, Korea Atomic Energy Research Institute) ;
  • Jun, Byung-Hyuk (Neutron and Radioisotope Application Research Division, Korea Atomic Energy Research Institute)
  • 정현덕 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 이동건 ((주)삼동 기술연구소) ;
  • 류성수 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 박해웅 (한국기술교육대학교 신소재공학과) ;
  • 김찬중 (한국원자력연구원 중성자동위원소응용연구부) ;
  • 전병혁 (한국원자력연구원 중성자동위원소응용연구부)
  • Received : 2019.10.14
  • Accepted : 2019.10.25
  • Published : 2019.10.28

Abstract

This study demonstrates the effect of addition of Fe particles of different sizes on the critical properties of the superconductor $MgB_2$. Bulk $MgB_2$ is synthesized by ball milling Mg and B powders with Fe particles at $900^{\circ}C$. When Fe particles with size less than $10{\mu}m$ are added in $MgB_2$, they easily react with B and form the FeB phase, resulting in a reduction in the amount of the $MgB_2$ phase and deterioration of the crystallinity. Accordingly, both the critical temperature and the critical current density are significantly reduced. On the other hand, when larger Fe particles are added, the $Fe_2B$ phase forms instead of FeB due to the lower reactivity of Fe toward B. Accordingly, negligible loss of B occurs, and the critical properties are found to be similar to those of the intact $MgB_2$.

Keywords

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani and J. Akimitsu: Nature, 410 (2001) 63. https://doi.org/10.1038/35065039
  2. C. Buzea and T. Yamashita: Supercond. Sci. Technol., 14 (2001) 115. https://doi.org/10.1088/0953-2048/14/11/201
  3. V. Ferrando, P. Orgiani, A.V. Pogrebnyakov, J. Chen, Q. Li, J. M. Redwing, X. X. Xi, J. E. Giencke, C.-B. Eom, Q.-R. Feng, J. B. Betts and C. H. Mielke: Appl. Phys. Lett., 87 (2005) 252509. https://doi.org/10.1063/1.2149289
  4. B. A. Glowacki, M. Majoros, M. Vickers, J. E. Evetts, Y. Shi and I. McDougall: Supercond. Sci. Technol., 14 (2001) 193. https://doi.org/10.1088/0953-2048/14/4/304
  5. H. Kumakura, A. Matsumoto, H. Fujii and K. Togano: Appl. Phys. Lett., 79 (2001) 2435. https://doi.org/10.1063/1.1407856
  6. E. Martinez, L. A. Angurel and R. Navarro: Supercond. Sci. Technol., 15 (2002) 1043. https://doi.org/10.1088/0953-2048/15/7/309
  7. B. Q. Fu, Y. Feng, G. Yan, C. F. Liu, L. Zhou, L. Z. Cao, K. Q. Ruan and X. G. Li: Physica C, 392-396 (2003) 1035. https://doi.org/10.1016/S0921-4534(03)00858-X
  8. T. Holubek, P. Kovac and T. Melisek: Supercond. Sci. Technol., 18 (2005) 1218. https://doi.org/10.1088/0953-2048/18/9/013
  9. S. I. Schlachter, A. Frank, B. Ringsdorf, H. Orschulko, B. Obst, B. Liu and W. Goldacker: Physica C, 445-448 (2006) 777. https://doi.org/10.1016/j.physc.2006.05.021
  10. F. Karaboga, A. T. Ulgen, H. Yetis, M. Akdogan, M. Pakdil and I. Belenli: Mater. Sci. Eng., A, 721 (2018) 89. https://doi.org/10.1016/j.msea.2018.02.073
  11. S. X. Dou, S. Soltanian, Y. Zhao, E. Getin, Z. Chen, O. Shcherbakova and J. Horvat: Supercond. Sci. Technol., 18 (2005) 710. https://doi.org/10.1088/0953-2048/18/5/022
  12. C. H. Cheng, Y. Yang, C. Ke and H. T. Lin: Physica C, 470 (2010) 1092. https://doi.org/10.1016/j.physc.2010.05.044
  13. C. J. Kim, J. H. Yi, B. H. Jun, B. Y. You, S. D. Park and K. N. Choo: Physica C, 502 (2014) 4. https://doi.org/10.1016/j.physc.2014.04.006
  14. J. H. Yi, K. T. Kim, B. H. Jun, J. M. Sohn, B. G. Kim, J. Joo and C. J. Kim: Physica C, 469 (2009) 1192. https://doi.org/10.1016/j.physc.2009.05.190
  15. M. Keddam, M. Kulka, N. Makuch, A. Pertek and L. Maldzinski: Appl. Surf. Sci., 298 (2014) 155. https://doi.org/10.1016/j.apsusc.2014.01.151
  16. V. I. Dybkov: Powder Metall. Met. Ceram., 54 (2016) 652. https://doi.org/10.1007/s11106-016-9759-2
  17. D. K. Singh, B. Tiwari, R. Jha, H. Kishan and V. P. S. Awana: Physica C, 505 (2014) 104. https://doi.org/10.1016/j.physc.2014.06.004
  18. B. H. Jun, J. H. Kim, C. J. Kim and K. N. Choo: J. Alloys Compd., 650 (2015) 794. https://doi.org/10.1016/j.jallcom.2015.08.034